• 如何用栈实现递归与非递归的转换



    如何用栈实现递归与非递归的转换 

    一.为什么要学习递归与非递归的转换的实现方法? 
       1)并不是每一门语言都支持递归的. 
       2)有助于理解递归的本质. 
       3)有助于理解栈,树等数据结构. 

    二.递归与非递归转换的原理. 
       递归与非递归的转换基于以下的原理:所有的递归程序都可以用树结构表示出来.需要说明的是, 
    这个"原理"并没有经过严格的数学证明,只是我的一个猜想,不过在至少在我遇到的例子中是适用的. 
       学习过树结构的人都知道,有三种方法可以遍历树:前序,中序,后序.理解这三种遍历方式的递归和非 
    递归的表达方式是能够正确实现转换的关键之处,所以我们先来谈谈这个.需要说明的是,这里以特殊的 
    二叉树来说明,不过大多数情况下二叉树已经够用,而且理解了二叉树的遍历,其它的树遍历方式就不难 
    了. 
    1)前序遍历 

    a)递归方式: 

    void preorder_recursive(Bitree T)		/* 先序遍历二叉树的递归算法 */
    
    {
    if (T) {
    visit(T);  /* 访问当前结点 */
    preorder_recursive(T->;lchild); /* 访问左子树 */
    preorder_recursive(T->;rchild); /* 访问右子树 */
    }
    }



    b)非递归方式 

    void preorder_nonrecursive(Bitree T)		/* 先序遍历二叉树的非递归算法 */
    
    {
    initstack(S);
    push(S,T);  /* 根指针进栈 */
    while(!stackempty(S)) {
    while(gettop(S,p)&&p) { /* 向左走到尽头 */
    visit(p); /* 每向前走一步都访问当前结点 */
    push(S,p->;lchild);
    }
    pop(S,p);
    if(!stackempty(S)) { /* 向右走一步 */
    pop(S,p);
    push(S,p->;rchild); 
    }
    }
    }




    2)中序遍历 

    a)递归方式 

    void inorder_recursive(Bitree T)		/* 中序遍历二叉树的递归算法 */
    
    {
    if (T) {
    inorder_recursive(T->;lchild); /* 访问左子树 */
    visit(T);  /* 访问当前结点 */
    inorder_recursive(T->;rchild); /* 访问右子树 */
    }
    }



    b)非递归方式 

    void  inorder_nonrecursive(Bitree T)
    
    {
    initstack(S); /* 初始化栈 */
    push(S, T); /* 根指针入栈 */

    while (!stackempty(S)) {
    while (gettop(S, p) && p)  /* 向左走到尽头 */
    push(S, p->;lchild);
    pop(S, p); /* 空指针退栈 */
    if (!stackempty(S)) {
    pop(S, p);
    visit(p); /* 访问当前结点 */
    push(S, p->;rchild); /* 向右走一步 */
    }
    }
    }



    3)后序遍历 

    a)递归方式 

    void postorder_recursive(Bitree T)		/* 中序遍历二叉树的递归算法 */
    
    {
       if (T) {
       postorder_recursive(T->;lchild); /* 访问左子树 */
       postorder_recursive(T->;rchild); /* 访问右子树 */
       visit(T);  /* 访问当前结点 */
       }
    }



    b)非递归方式 

    typedef struct {
    
    BTNode* ptr;
    enum {0,1,2} mark;
    } PMType;  /* 有mark域的结点指针类型 */

    void postorder_nonrecursive(BiTree T) /* 后续遍历二叉树的非递归算法 */
    {
    PMType a;
    initstack(S);  /* S的元素为PMType类型 */
    push (S,{T,0});  /* 根结点入栈 */
    while(!stackempty(S)) {
    pop(S,a);
    switch(a.mark)
    {
    case 0:
    push(S,{a.ptr,1});  /* 修改mark域 */
    if(a.ptr->;lchild) 
    push(S,{a.ptr->;lchild,0}); /* 访问左子树 */
    break;
    case 1:
    push(S,{a.ptr,2});  /* 修改mark域 */
    if(a.ptr->;rchild) 
    push(S,{a.ptr->;rchild,0}); /* 访问右子树 */
    break;
    case 2:
    visit(a.ptr);  /* 访问结点 */
    }
    }
    }


           4)如何实现递归与非递归的转换 
              通常,一个函数在调用另一个函数之前,要作如下的事情:a)将实在参数,返回地址等信息传递 
           给被调用函数保存; b)为被调用函数的局部变量分配存储区;c)将控制转移到被调函数的入口. 
              从被调用函数返回调用函数之前,也要做三件事情:a)保存被调函数的计算结果;b)释放被调 
           函数的数据区;c)依照被调函数保存的返回地址将控制转移到调用函数. 
              所有的这些,不论是变量还是地址,本质上来说都是"数据",都是保存在系统所分配的栈中的. 
      ok,到这里已经解决了第一个问题:递归调用时数据都是保存在栈中的,有多少个数据需要保存 
           就要设置多少个栈,而且最重要的一点是:控制所有这些栈的栈顶指针都是相同的,否则无法实现 
           同步. 
              下面来解决第二个问题:在非递归中,程序如何知道到底要转移到哪个部分继续执行?回到上 
           面说的树的三种遍历方式,抽象出来只有三种操作:访问当前结点,访问左子树,访问右子树.这三 
           种操作的顺序不同,遍历方式也不同.如果我们再抽象一点,对这三种操作再进行一个概括,可以 
           得到:a)访问当前结点:对目前的数据进行一些处理;b)访问左子树:变换当前的数据以进行下一次 
           处理;c)访问右子树:再次变换当前的数据以进行下一次处理(与访问左子树所不同的方式). 
              下面以先序遍历来说明: 

    void preorder_recursive(Bitree T)		/* 先序遍历二叉树的递归算法 */
    
    {
    if (T) {
    visit(T);  /* 访问当前结点 */
    preorder_recursive(T->;lchild); /* 访问左子树 */
    preorder_recursive(T->;rchild); /* 访问右子树 */
    }
    }


       visit(T)这个操作就是对当前数据进行的处理, preorder_recursive(T->;lchild)就是把当前 
    数据变换为它的左子树,访问右子树的操作可以同样理解了. 
       现在回到我们提出的第二个问题:如何确定转移到哪里继续执行?关键在于一下三个地方:a) 
    确定对当前数据的访问顺序,简单一点说就是确定这个递归程序可以转换为哪种方式遍历的树结 
    构;b)确定这个递归函数转换为递归调用树时的分支是如何划分的,即确定什么是这个递归调用 
    树的"左子树"和"右子树"c)确定这个递归调用树何时返回,即确定什么结点是这个递归调用树的 
    "叶子结点". 

    三.三个例子 
       好了上面的理论知识已经足够了,下面让我们看看几个例子,结合例子加深我们对问题的认识 
    .即使上面的理论你没有完全明白,不要气馁,对事物的认识总是曲折的,多看多想你一定可以明 
    白(事实上我也是花了两个星期的时间才弄得比较明白得). 
        
            1)例子一: 

    f(n) =  n + 1;	(n <2) 
    
         f[n/2] + f[n/4](n >;= 2);

    这个例子相对简单一些,递归程序如下:
    int f_recursive(int n)
    {
    int u1, u2, f;

    if (n < 2) 
    f = n + 1;
    else {
    u1 = f_recursive((int)(n/2));
    u2 = f_recursive((int)(n/4));
    f = u1 * u2;  
    }

    return f;
    }



       下面按照我们上面说的,确定好递归调用树的结构,这一步是最重要的.首先,什么是叶子结点 
    ,我们看到当n < 2时f = n + 1,这就是返回的语句,有人问为什么不是f = u1 * u2,这也是一个 
    返回的语句呀?答案是:这条语句是在u1 = exmp1((int)(n/2))和u2 = exmp1((int)(n/4))之后 
    执行的,是这两条语句的父结点. 其次,什么是当前结点,由上面的分析,f = u1 * u2即是父结点 
    .然后,顺理成章的u1 = exmp1((int)(n/2))和u2 = exmp1((int)(n/4))就分别是左子树和右子 
    树了.最后,我们可以看到,这个递归函数可以表示成后序遍历的二叉调用树.好了,树的情况分析 
    到这里,下面来分析一下栈的情况,看看我们要把什么数据保存在栈中,在上面给出的后序遍历的如果这个过程你没 
    非递归程序中我们已经看到了要加入一个标志域,因此在栈中要保存这个标志域;另外,u1,u2和 
    每次调用递归函数时的n/2和n/4参数都要保存,这样就要分别有三个栈分别保存:标志域,返回量 
    和参数,不过我们可以做一个优化,因为在向上一层返回的时候,参数已经没有用了,而返回量也 
    只有在向上返回时才用到,因此可以把这两个栈合为一个栈.如果对于上面的分析你没有明白,建 
    议你根据这个递归函数写出它的递归栈的变化情况以加深理解,再次重申一点:前期对树结构和 
    栈的分析是最重要的,如果你的程序出错,那么请返回到这一步来再次分析,最好把递归调用树和 
    栈的变化情况都画出来,并且结合一些简单的参数来人工分析你的算法到底出错在哪里. 
        ok,下面给出我花了两天功夫想出来的非递归程序(再次提醒你不要气馁,大家都是这么过来 
    的). 

    int	f_nonrecursive(int n)
    
    {
    int stack[20], flag[20], cp;
     
    /* 初始化栈和栈顶指针 */
    cp = 0;
    stack[0] = n;
    flag[0] = 0;

    while (cp >;= 0) {
    switch(flag[cp]) {
    case 0:  /* 访问的是根结点 */
    if (stack[cp] >;= 2) { /* 左子树入栈 */
    flag[cp] = 1;  /* 修改标志域 */
    cp++;
    stack[cp] = (int)(stack[cp - 1] / 2);
    flag[cp] = 0;
    } else {  /* 否则为叶子结点 */
    stack[cp] += 1;
    flag[cp] = 2;
    }
    break;
    case 1:  /* 访问的是左子树 */
    if (stack[cp] >;= 2) { /* 右子树入栈 */
    flag[cp] = 2;  /* 修改标志域 */
    cp += 2;
    stack[cp] = (int)(stack[cp - 2] / 4);
    flag[cp] = 1;
    } else {  /* 否则为叶子结点 */
    stack[cp] += 1;
    flag[cp] = 2;
    }
    break;
    case 2:  /* */
    if (flag[cp - 1] == 2) { /* 当前是右子树吗? */
    /* 
     * 如果是右子树, 那么对某一棵子树的后序遍历已经
     * 结束,接下来就是对这棵子树的根结点的访问
     */
    stack[cp - 2] = stack[cp] * stack[cp - 1];
    flag[cp - 2] = 2;
    cp = cp - 2;
    } else 
    /* 否则退回到后序遍历的上一个结点 */
    cp--;
    break;
    }
    }

    return stack[0];
    }


               算法分析:a)flag只有三个可能值:0表示第一次访问该结点,1表示访问的是左子树,2表示 
    已经结束了对某一棵子树的访问,可能当前结点是这棵子树的右子树,也可能是叶子结点.b)每 
    遍历到某个结点的时候,如果这个结点满足叶子结点的条件,那么把它的flag域设为2;否则根据 
    访问的是根结点,左子树或是右子树来设置flag域,以便决定下一次访问该节点时的程序转向. 


    2)例子二 

    快速排序算法 
    递归算法如下: 

    void	swap(int array[], int low, int high)
    
    {
    int temp;

    temp = array[low];
    array[low] = array[high];
    array[high] = temp;
    }

    int partition(int array[], int low, int high)
    {
    int p;

    p = array[low];

    while (low < high) {
    while (low < high && array[high] >;= p) 
    high--;
    swap(array,low,high);
    while (low < high && array[low]  <= p) 
    low++;
    swap(array,low,high);
    }

    return low;
    }

    void qsort_recursive(int array[], int low, int high)
    {
    int p;

    if(low < high) {
    p = partition(array, low, high);
    qsort_recursive(array, low, p - 1);
    qsort_recursive(array, p + 1, high);
    }
    }


       需要说明一下快速排序的算法: partition函数根据数组中的某一个数把数组划分为两个部分, 
    左边的部分均不大于这个数,右边的数均不小于这个数,然后再对左右两边的数组再进行划分.这 
    里我们专注于递归与非递归的转换,partition函数在非递归函数中同样的可以调用(其实 
    partition函数就是对当前结点的访问). 
       再次进行递归调用树和栈的分析: 
       递归调用树:a)对当前结点的访问是调用partition函数;b)左子树: 
    qsort_recursive(array, low, p - 1);c)右子树:qsort_recursive(array, p + 1, high); 
    d)叶子结点:当low < high时;e)可以看出这是一个先序调用的二叉树 
       栈:要保存的数据是两个表示范围的坐标. 
        

    void	qsort_nonrecursive(int array[], int low, int high)
    
    {
    int m[50], n[50], cp, p; 

    /* 初始化栈和栈顶指针 */
    cp = 0;
    m[0] = low;
    n[0] = high;

    while (m[cp] < n[cp]) {
    while (m[cp] < n[cp]) { /* 向左走到尽头 */
    p = partition(array, m[cp], n[cp]); /* 对当前结点的访问 */
    cp++;
    m[cp] = m[cp - 1];
    n[cp] = p - 1;
    }
    /* 向右走一步 */
    m[cp + 1] = n[cp] + 2;
    n[cp + 1] = n[cp - 1];
    cp++;
    }
    }



    3)例子三 
    阿克曼函数: 

    akm(m, n) = n + 1;			(m = 0时)
    
        akm(m - 1, 1); (n = 0时)
        akm(m - 1, akm(m, n - 1)); (m != 0且n != 0时)

         

    递归算法如下: 

    int	akm_recursive(int m, int n)
    
    {
    int temp;

    if (m == 0) 
    return (n + 1);
    else if (n == 0) 
    return akm_recursive(m - 1, 1);
    else {
    temp = akm_recursive(m, n - 1);
    return akm_recursive(m - 1, temp);
    }
    }



    这个例子相对难一些,不过只要正确的分析递归调用树和栈的变化情况就不难解决,先卖个关子,晚上再来公布答案,感兴趣的可以先想想.

    转:http://www.chinaunix.net/old_jh/23/331522.html

  • 相关阅读:
    Linux 配置 SSL 证书
    freemarker 异常处理
    StringTemplateLoader的用法
    序列的重点知识小结
    Linux下安装lrzsz上传下载工具
    ajax技术
    Response对象介绍(服务器到客户端)
    Request对象介绍(客户端到服务器)
    JSP--内置对象&动作标签介绍
    JSP--常用指令
  • 原文地址:https://www.cnblogs.com/10jschen/p/2646004.html
Copyright © 2020-2023  润新知