声明: 文章大部分代码来源自《算法》第四版
源程序链接 https://algs4.cs.princeton.edu/32bst/BST.java.html
二叉查找树的性质
- 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 任意节点的左、右子树也分别为二叉查找树。
- 没有键值相等的节点(no duplicate nodes)。
节点表示
private class Node {
private Key key; // sorted by key
private Value val; // associated data
private Node left, right; // left and right subtrees
private int size; // number of nodes in subtree
public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.size = size;
}
}
- key -- 它是关键字,是用来对二叉查找树的节点进行排序的。
- left -- 它指向当前节点的左孩子。
- right-- 它指向当前节点的右孩子。
- val -- 键对应的值
二叉查找树表示
public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST
....
public Node<Key> get();
public void put();
//功能在下边分别给出
}
查找
public Value get(Key key) {
return get(root, key);
}
private Value get(Node x, Key key) {
if (key == null) throw new IllegalArgumentException("calls get() with a null key");
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) return get(x.left, key);
else if (cmp > 0) return get(x.right, key);
else return x.val;
}
插入
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("calls put() with a null key");
if (val == null) {
delete(key);//因为值为NULL,删除这个键
return;
}
root = put(root, key, val);
}
private Node put(Node x, Key key, Value val) {
if (x == null) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
x.size = 1 + size(x.left) + size(x.right);
return x;
}
删除最大值和最小值
//删除最小键
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMin(root);
//assert check();
}
private Node deleteMin(Node x) {
if (x.left == null) return x.right; //如果碰到节点的左子树为空,返回右子树,即 x.left = x.right; x.left原本指向的节点被回收。
x.left = deleteMin(x.left);
x.size = size(x.left) + size(x.right) + 1;
return x;
}
//删除最大值
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
root = deleteMax(root);
assert check();
}
private Node deleteMax(Node x) {
if (x.right == null) return x.left;//如果碰到节点的右子树为空,返回左子树,即 x.right = x.left; x.right原本指向的节点被回收
x.right = deleteMax(x.right);
x.size = size(x.left) + size(x.right) + 1;
return x;
}
最大值和最小值
//最小值
public Key min() {
if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
return min(root).key;
}
private Node min(Node x) {
if (x.left == null) return x;
else return min(x.left);
}
//最大值
public Key max() {
if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
return max(root).key;
}
private Node max(Node x) {
if (x.right == null) return x;
else return max(x.right);
}
删除
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
root = delete(root, key);
assert check();
}
private Node delete(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left;
if (x.left == null) return x.right;
Node t = x;
x = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
}
x.size = size(x.left) + size(x.right) + 1;
return x;
}
前驱和后继
//前驱
public Key floor(Key key) {
if (key == null) throw new IllegalArgumentException("argument to floor() is null");
if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
Node x = floor(root, key);
if (x == null) return null;
else return x.key;
}
private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}
//Returns the smallest key in the symbol table greater than or equal to {@code key}.
public Key ceiling(Key key) {
if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
Node x = ceiling(root, key);
if (x == null) return null;
else return x.key;
}
private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) {
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
return ceiling(x.right, key);
}
排名
1.已知排名求键 Select
public Key select(int k) {
if (k < 0 || k >= size()) {
throw new IllegalArgumentException("argument to select() is invalid: " + k);
}
Node x = select(root, k);
return x.key;
}
// Return key of rank k.
private Node select(Node x, int k) {
if (x == null) return null;
int t = size(x.left);
if (t > k) return select(x.left, k); //在左子树
else if (t < k) return select(x.right, k-t-1); //在右子树,在右子树的排名是 k-t-1
else return x;
}
2.已知键求排名 Rank
public int rank(Key key) {
if (key == null) throw new IllegalArgumentException("argument to rank() is null");
return rank(key, root);
}
// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}
遍历
public Iterable<Key> keys() {
if (isEmpty()) return new Queue<Key>();
return keys(min(), max());
}
/**
* Returns all keys in the symbol table in the given range,
* as an {@code Iterable}.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return all keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
public Iterable<Key> keys(Key lo, Key hi) {
if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
Queue<Key> queue = new Queue<Key>();
keys(root, queue, lo, hi);
return queue;
}
private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}