• 组合游戏的初步学习


    组合游戏以前接触的比较少,现在学习一下,这种东西还是结合题目好理解点.

    网上比较好的博客:

    组合博弈 – 三大基本博弈

    1. 巴什博奕(Bash Game) :

      有一堆n个物品,两人轮流从堆中取物品,每次取 x 个 ( 1 ≤ x ≤ m)。最后取光者为胜。
      

      题目:hdu 1846 Brave Game

    2. 威佐夫博奕(Wythoff Game):

      有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
      

      题目:poj 1067 取石子游戏
      代码:

    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    int main()
    {
        int a,b,k,a_k;
        while(~scanf("%d%d",&a,&b)){
             k = abs(a-b);
             a = a < b? a : b;
             a_k = floor(k*(1.0 + sqrt(5.0))/2);
             printf("%d
    ",a!=a_k);
             //输出为0,说明该点为必败点,1为必胜点
        }
        return 0;
    }
    1. 尼姆博奕(Nimm Game):

      有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
      

      一般可以用SG函数求解

    必胜点和必败点的概念:

       P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
    

    必胜点和必败点的性质:

        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
    

    * 有些题目可以从终结点(必败点P)推出其他点的性质,一般可以发现规律。 *
    例题:
    1. hdu 1846 Brave Game
    2. poj 1067 取石子游戏


    组合游戏 - SG函数和SG定理

    Sprague-Grundy定理(SG定理):

        游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。不知道Nim游戏的请移步:这里
    

    SG函数:

        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
    
        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
    

    下面是几道用到SG函数的简单题目
    1. hdu 1846 Brave Game
    2. hdu 1847 Good Luck in CET-4 Everybody!
    3. hdu 1848 Fibonacci again and again
    hdu 1848
    题意:
    Nim游戏,只不过每次从石堆里可以拿的数是菲波那切数。其它地方跟Nim游戏一样。

    #include<bits/stdc++.h>
    using namespace std;
    const int N=1009;
    const int M=20;
    int f[M],sg[N],vis[N];
    void getSG(int n)
    {
        int i,j;
        memset(sg,0,sizeof(sg));
        for(int i=1;i<=n;i++){
            memset(vis,0,sizeof(vis));
            for(int j=0;f[j]<=i&&j<M;j++)vis[sg[i-f[j]]]=1;
            for(j=0;;j++)if(!vis[j]){
                sg[i]=j;break;
            }
        }
    }
    
    int main()
    {
        int n,m,p;
        f[0]=f[1]=1;
        for(int i=2;i<M;i++)f[i]=f[i-1]+f[i-2];
        getSG(1000);
        while(~scanf("%d%d%d",&m,&n,&p)&&(n+m+p)){
            if(sg[m]^sg[n]^sg[p])printf("Fibo
    ");
            else printf("Nacci
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    集合类提供的的方法
    集合相关常识
    day12练习题
    Django(重点)
    cookie和session
    admin的配置
    Django安装和配置环境变量
    django ORM创建数据库方法
    前端学习之jquery
    数据库基础
  • 原文地址:https://www.cnblogs.com/01world/p/5762835.html
Copyright © 2020-2023  润新知