关于 CP15 协处理器和其相关寄存器的详细内容请参考下面两份文档:《ARM ArchitectureReference Manual ARMv7-A and ARMv7-R edition.pdf》第 1469 页“B3.17 Oranization of the CP15 registers in a VMSA implementation”。《Cortex-A7 Technical ReferenceManua.pdf》第55 页“Capter 4 System Control”。CP15 协处理器一般用于存储系统管理,但是在中断中也会使用到,CP15 协处理器一共有16 个 32 位寄存器。CP15 协处理器的访问通过如下指令完成:
MRC: 将 CP15 协处理器中的寄存器数据读到 ARM 寄存器中。
MCR: 将 ARM 寄存器的数据写入到 CP15 协处理器寄存器中。
MRC 就是读 CP15 寄存器,MCR 就是写 CP15 寄存器,MCR 指令格式如下:
MCR{cond} p15, <opc1>, <Rt>, <CRn>, <CRm>, <opc2>
cond:指令执行的条件码,如果忽略的话就表示无条件执行。
opc1:协处理器要执行的操作码。
Rt:ARM 源寄存器,要写入到 CP15 寄存器的数据就保存在此寄存器中。
CRn :CP15 协处理器的目标寄存器。
CRm: :协处理器中附加的目标寄存器或者源操作数寄存器,如果不需要附加信息就将
CRm 设置为 C0,否则结果不可预测。
opc2 :可选的协处理器特定操作码,当不需要的时候要设置为 0。
MRC 的指令格式和 MCR 一样,只不过在 MRC 指令中 Rt 就是目标寄存器,也就是从
CP15 指定寄存器读出来的数据会保存在 Rt 中。而 CRn 就是源寄存器,也就是要读取的写处理器寄存器。假如我们要将 CP15 中 C0 寄存器的值读取到 R0 寄存器中,那么就可以使用如下命令:
MRC p15, 0, r0, c0, c0, 0
CP15 协处理器有 16 个 32 位寄存器,c0~c15,只介绍c0、c1、c12 和 c15 这四个寄存器,其他的寄存器大家参考上面的两个文档即可。
1 、c0 寄存器
CP15 协处理器有 16 个 32 位寄存器,c0~c15,在使用 MRC 或者 MCR 指令访问这 16 个
寄存器的时候,指令中的 CRn、opc1、CRm 和 opc2 通过不同的搭配,其得到的寄存器含义是不同的。比如 c0 在不同的搭配情况下含义如图所示:
在上图中当 MRC/MCR 指令中的 CRn=c0,opc1=0,CRm=c0,opc2=0 的时候就表示此时的 c0 就是 MIDR 寄存器,也就是主 ID 寄存器,这个也是 c0 的基本作用。对于 Cortex-A7内核来说,c0 作为 MDIR 寄存器的时候其含义如图所示:
在上图中各位所代表的含义如下:
bit31:24:厂商编号,0X41,ARM。
bit23:20:内核架构的主版本号,ARM 内核版本一般使用 rnpn 来表示,比如 r0p1,其中 r0 后面的 0 就是内核架构主版本号。
bit19:16:架构代码,0XF,ARMv7 架构。
bit15:4:内核版本号,0XC07,Cortex-A7 MPCore 内核。
bit3:0:内核架构的次版本号,rnpn 中的 pn,比如 r0p1 中 p1 后面的 1 就是次版本号。
2 、c1 寄存器
c1 寄存器同样通过不同的配置,其代表的含义也不同,如图所示:
在上图中当 MRC/MCR 指令中的 CRn=c1,opc1=0,CRm=c0,opc2=0 的时候就表示此时的 c1 就是 SCTLR 寄存器,也就是系统控制寄存器,这个是 c1 的基本作用。SCTLR 寄存器主要是完成控制功能的,比如使能或者禁止 MMU、I/D Cache 等,c1 作为 SCTLR 寄存器的时候其含义如图所示:
bit13:V , 中断向量表基地址选择位,为 0 的话中断向量表基地址为 0X00000000,软件可以使用 VBAR 来重映射此基地址,也就是中断向量表重定位。为 1 的话中断向量表基地址为0XFFFF0000,此基地址不能被重映射。
bit12:I,I Cache 使能位,为 0 的话关闭 I Cache,为 1 的话使能 I Cache。
bit11:Z,分支预测使能位,如果开启 MMU 的话,此位也会使能。
bit10:SW,SWP 和 SWPB 使能位,当为 0 的话关闭 SWP 和 SWPB 指令,当为 1 的时候就使能 SWP 和 SWPB 指令。
bit9:3:未使用,保留。
bit2:C,D Cache 和缓存一致性使能位,为 0 的时候禁止 D Cache 和缓存一致性,为 1 时
使能。
bit1:A,内存对齐检查使能位,为 0 的时候关闭内存对齐检查,为 1 的时候使能内存对齐检查。
bit0:M,MMU 使能位,为 0 的时候禁止 MMU,为 1 的时候使能 MMU。
如果要读写 SCTLR 的话,就可以使用如下命令:
MRC p15, 0, <Rt>, c1, c0, 0 ;读取 SCTLR 寄存器,数据保存到 Rt 中。
MCR p15, 0, <Rt>, c1, c0, 0 ;将 Rt 中的数据写到 SCTLR(c1)寄存器中。
3 、c12 寄存器
c12 寄存器通过不同的配置,其代表的含义也不同,如图所示:
在上图中当 MRC/MCR 指令中的 CRn=c12,opc1=0,CRm=c0,opc2=0 的时候就表示此时 c12 为 VBAR 寄存器,也就是向量表基地址寄存器。设置中断向量表偏移的时候就需要将新的中断向量表基地址写入 VBAR 中,假如代码链接的起始地址为0X87800000,而中断向量表肯定要放到最前面,也就是 0X87800000 这个地址处。所以需要设置 VBAR 为 0X87800000,设置命令如下:
ldr r0, =0X87800000 ; r0=0X87800000
MCR p15, 0, r0, c12, c0, 0 ;将 r0 里面的数据写入到 c12 中,即 c12=0X87800000
4 、c15 寄存器
c15 寄存器也可以通过不同的配置得到不同的含义,参考文档《Cortex-A7 Technical ReferenceManua.pdf》第 68 页“4.2.16 c15 registers”,其配置如图 17.1.4.5 所示:
在图 17.1.4.5 中,我们需要 c15 作为 CBAR 寄存器,因为 GIC 的基地址就保存在 CBAR中,我们可以通过如下命令获取到 GIC 基地址:
MRC p15, 4, r1, c15, c0, 0 ; 获取 GIC 基础地址,基地址保存在 r1 中。
获取到 GIC 基地址以后就可以设置 GIC 相关寄存器了,比如我们可以读取当前中断 ID,当前中断 ID 保存在 GICC_IAR 中,寄存器 GICC_IAR 属于 CPU 接口端寄存器,寄存器地址相对于 CPU 接口端起始地址的偏移为 0XC,因此获取当前中断 ID 的代码如下:
MRC p15, 4, r1, c15, c0, 0 ;获取 GIC 基地址
ADD r1, r1, #0X2000 ;GIC 基地址加 0X2000 得到 CPU 接口端寄存器起始地址
LDR r0, [r1, #0XC] ;读取 CPU 接口端起始地址+0XC 处的寄存器值,也就是寄存器;GIC_IAR 的值
关于 CP15 协处理器就讲解到这里,简单总结一下,通过 c0 寄存器可以获取到处理器内核信息;通过 c1 寄存器可以使能或禁止 MMU、I/D Cache 等;通过 c12 寄存器可以设置中断向量偏移;通过 c15 寄存器可以获取 GIC 基地址。关于 CP15 的其他寄存器,查阅本文前面列举的 2 份 ARM 官方资料。
注:原文出自 【正点原子】I.MX6U嵌入式Linux驱动开发指南V1.3