Description
给一个长度为n的序列a。1≤a[i]≤n。 m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。
Input
第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。
Output
m行,每行对应一个答案。
主席树板子题
话说为啥是个板子题,我也没看出来
查询时需要找出出现次数为((r-l+1)/2)的.
主席树基本操作,离散化是必须的.
然后建树操作与之前操作相同.
难点在于查询时候如何做.
最基本的查询,是判断当前根的左节点的(sum)与查询的大小的关系.
如果左边的(sum)大于等于((r-l+1)/2)则,此数在左侧.
然后如何判断在右侧?
用当前根总共的(sum)减去左边的(sum),即为右边的(sum),判断是否大于((r-l+1)/2)即可.
否则(return 0)
代码
#include<cstdio>
#include<cctype>
#include<algorithm>
#define N 500008
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,new_n=1;
int a[N],b[N],cnt;
int root[N*20],sum[N*20],lson[N*20],rson[N*20];
void build(int lastroot,int &nowroot,int l,int r,int pos)
{
nowroot=++cnt;
sum[nowroot]=sum[lastroot]+1;
lson[nowroot]=lson[lastroot];
rson[nowroot]=rson[lastroot];
if(l==r)return;
int mid=(l+r)>>1;
if(pos<=mid)build(lson[lastroot],lson[nowroot],l,mid,pos);
else build(rson[lastroot],rson[nowroot],mid+1,r,pos);
}
int query(int lastroot,int nowroot,int l,int r,int pos)
{
if(l==r)return l;
int tmp=sum[lson[nowroot]]-sum[lson[lastroot]];
int mid=(l+r)>>1;
if(pos<tmp)return query(lson[lastroot],lson[nowroot],l,mid,pos);
if(sum[nowroot]-sum[lastroot]-tmp>pos)return query(rson[lastroot],rson[nowroot],mid+1,r,pos);
return 0;
}
int main()
{
in(n),in(m);
for(R int i=1;i<=n;i++)in(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
for(R int i=2;i<=n;i++)if(b[i]!=b[new_n])b[++new_n]=b[i];
for(R int i=1;i<=n;i++)
build(root[i-1],root[i],1,new_n,lower_bound(b+1,b+new_n+1,a[i])-b);
for(R int i=1,l,r;i<=m;i++)
{
in(l),in(r);
int pos=query(root[l-1],root[r],1,new_n,(r-l+1)>>1);
printf("%d
",b[pos]);
}
}