• Kruskal+LCA【p2245】 星际导航


    Description

    sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好。为了方便起见,我们可以认为宇宙是一张有(N) 个顶点和(M) 条边的带权无向图,顶点表示各个星系,两个星系之间有边就表示两个星系之间可以直航,而边权则是航行的危险程度。

    sideman 现在想把危险程度降到最小,具体地来说,就是对于若干个询问(A, B),sideman 想知道从顶点(A) 航行到顶点(B) 所经过的最危险的边的危险程度值最小可能是多少。作为sideman 的同学,你们要帮助sideman 返回家园,兼享受安全美妙的宇宙航行。所以这个任务就交给你了。

    Input

    第一行包含两个正整数(N)(M),表示点数和边数。

    之后 (M) 行,每行三个整数(A),$B (和)L(,表示顶点)A$ 和(B) 之间有一条边长为(L) 的边。顶点从(1) 开始标号。

    下面一行包含一个正整数 (Q),表示询问的数目。

    之后 (Q) 行,每行两个整数(A)(B),表示询问(A)(B) 之间最危险的边危险程度的可能最小值。

    Output

    对于每个询问, 在单独的一行内输出结果。如果两个顶点之间不可达, 输出(impossible)

    woc这不是(Noip 2013)货车运输.

    切掉!

    显然,我们可以发现.想要让一些顶点联通,并且让最危险的边的危险程度值最小。

    优先想到了(Kruskal).

    首先(Kruckal)建树。

    如何求两点间的距离?带权(LCA)即可.

    如果两点不在一颗树,要输出(impossible)!!

    刚开始输出错了

    注意如果写两个结构体的话,对其中一个(Sort)(建树)的话,不要结构体中重载(<)

    代码

    #include<cstdio>
    #include<algorithm>
    #include<cctype>
    #define R register
    #define N 100008
    using namespace std;
    inline void in(int &x)
    {
    	int f=1;x=0;char s=getchar();
    	while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
    	while(isdigit(s)){x=x*10+s-'0';s=getchar();}
    	x*=f;
    }
    int n,m,head[N],tot,q;
    int fa[N],cnt,depth[N],f[N][21],gw[N][21];
    struct cod{int u,v,w;}edge[300010],tree[300010];
    inline bool ccp(const cod&a,const cod&b)
    {
    	return a.w<b.w;
    }
    int find(int x){return fa[x]==x ? x : fa[x]=find(fa[x]);}
    inline void add(int x,int y,int z)
    {
    	edge[++tot].u=head[x];
    	edge[tot].v=y;
    	edge[tot].w=z;
    	head[x]=tot;
    }
    inline void kruskal()
    {
    	for(R int i=1;i<=n;i++)fa[i]=i;
    	sort(tree+1,tree+m+1,ccp);
    	for(R int i=1;i<=m;i++)
    	{
    		int u=tree[i].u,v=tree[i].v,w=tree[i].w;
    		int fu=find(u),fv=find(v);
    		if(fu==fv)continue;
    		add(u,v,w);add(v,u,w);
    		fa[fu]=fv;cnt++;
    		if(cnt==n-1)break;
    	}
    	return ;
    }
    void dfs(int u,int fat,int dis)
    {
    	depth[u]=depth[fat]+1;
    	gw[u][0]=dis;f[u][0]=fat;
    	for(R int i=1;(1<<i)<=depth[u];i++)
    	{
    		f[u][i]=f[f[u][i-1]][i-1];
    		gw[u][i]=max(gw[u][i-1],gw[f[u][i-1]][i-1]);
    	}
    	for(R int i=head[u];i;i=edge[i].u)
    	{
    		if(edge[i].v==fat)continue;
    		dfs(edge[i].v,u,edge[i].w);
    	}
    }
    inline int lca(int x,int y)
    {
    	int res=-214748364;
    	if(depth[x]>depth[y])swap(x,y);
    	for(R int i=20;i>=0;i--)
    		if(depth[x]+(1<<i)<=depth[y])
    			res=max(res,gw[y][i]),y=f[y][i];
    	if(x==y)return res;
    	for(R int i=20;i>=0;i--)
    	{
    		if(f[x][i]==f[y][i])continue;
    		res=max(res,gw[x][i]);
    		res=max(res,gw[y][i]);
    		x=f[x][i],y=f[y][i];
    	}
    	return max(max(res,gw[x][0]),gw[y][0]);
    }
    int main()
    {
    	in(n),in(m);
    	for(R int i=1;i<=m;i++)
    		in(tree[i].u),in(tree[i].v),in(tree[i].w);
    	kruskal();
    	dfs(1,0,0);
    	in(q);
    	for(R int i=1,x,y;i<=q;i++)
    	{
    		in(x),in(y);
    		R int fx=find(x),fy=find(y);
    		if(fx!=fy)puts("impossible");
    		else printf("%d
    ",lca(x,y));
    	}
    }
    
  • 相关阅读:
    浅析CString内部实现机制
    ...sourceannotations.h(142) : error C3094: “repeatable”: 不允许匿名使用
    非MFC项目使用CString及如何打印
    GetTextExtentPoint32--获取字符串在屏幕上长度
    窄字符与宽字符相关的操作
    如何给图片添加黑色边框
    react native
    礼仪 习俗 文化
    职业 行业 2 博客
    读书 文摘 笔记 2 人生的支柱
  • 原文地址:https://www.cnblogs.com/-guz/p/9769005.html
Copyright © 2020-2023  润新知