GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3559 Accepted Submission(s): 1921
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
题意:输入测试样例数 t,输入n ,m。判断满足gcd(x,n)>=m条件x的个数
因为gcd(x,n)>=m
所以可以推出gcd(x/m,n/m)==1
所以题目转化为满足gcd(x/m,n/m)==1中X的个数 <==> 求 不大于n/m且与其互质的 n/m的个数 即求ϕ(n/m)
#include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; ll euler(ll x) { ll res = x; for(int i=2 ;i*i<=x ;i++) { if(x%i == 0) { res = res/i*(i-1); while(x%i==0) x/=i; } } if(x>1) res = res/x*(x-1); return res; } int main(){ int T; scanf("%d",&T); while(T--) { ll n,m; scanf("%I64d%I64d",&n,&m); ll ans = 0; for(ll i=1 ;i*i<=n ;i++) { if(n%i == 0)//i是n的因数 { if(i >= m) { ans += euler(n/i); } if((n/i)>=m && n/i != i)//i*(n/i)==n,判断i对应的另一个因数是否符合 { ans += euler(i); } } } printf("%I64d ",ans); } return 0; }