• hdu1395 2^x mod n = 1(欧拉函数)


    2^x mod n = 1

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 20133    Accepted Submission(s): 6321


    Problem Description
    Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.
     
    Input
    One positive integer on each line, the value of n.
     
    Output
    If the minimum x exists, print a line with 2^x mod n = 1.

    Print 2^? mod n = 1 otherwise.

    You should replace x and n with specific numbers.
     
    Sample Input
    2
    5
     
    Sample Output
    2^? mod 2 = 1
    2^4 mod 5 = 1
     
    Author
    MA, Xiao
     
    题意:求满足2^x mod n = 1的最小x的值
     
    直接暴力:
    #include<iostream>
    #include<math.h>
    #define ll long long
    using namespace std;
    int main()
    {
      ll n;
      while(~scanf("%lld",&n))
      {
        if(n==1||n%2==0)
          printf("2^? mod %d = 1
    ",n );
        else
        {
          ll s=2;
          for(int i=2;;i++)
          {
            s=s*2%n;
            if(s==1)
            {
              printf("2^%d mod %d = 1
    ",i,n );
              break;
            }
          }
          
        }
      }
      return 0;
    
    }

    欧拉函数:

    先求欧拉函数的值phi(n),在对phi(n)进行因数分解,把phi(n)的因数存在数组e[i]里面

    然后依次枚举e[i]的每一个数,同时判断这个数e[i]是否满足2e[i]%m==1,不断更新一个最小值,最后得到答案

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    #define LL __int64
    LL t,e[1000];
    LL mod;
    LL euler_phi(LL n)//欧拉函数
    {
        LL m=sqrt(n+0.5);
        LL ans=n,i;
        for(i=2;i<=m;i++)
        {
            if(n%i==0)
            {
                ans=ans/i*(i-1);
                while(n%i==0)n=n/i;
            }
        }
        if(n>1)ans=ans/n*(n-1);
        return ans;
    }
    void find(LL n)//找出m的所有因子
    {
        LL i;
        e[t++]=n;
        for(i=2;i*i<=n;i++)
        {
            if(n%i==0)
            {
                if(i*i==n)
                    e[t++]=i;
                else
                {
                    e[t++]=i;
                    e[t++]=n/i;
                }
            }
        }
    }
    LL pows(LL a,LL b)
    {
        LL s=1;
        while(b)
        {
            if(b&1)
                s=(s*a)%mod;
            a=(a*a)%mod;
            b=b>>1;
        }
        return s;
    }
    int main()
    {
        LL n;
        while(cin>>n)
        {
            if(n%2==0||n==1)
                cout<<"2^? mod "<<n<<" = 1"<<endl;
            else
            {
                LL m,ans,i;
                m=euler_phi(n);
                t=0;
                find(m);
                sort(e,e+t);
                mod=n;
                for(i=0;i<t;i++)
                {
                    if(pows(2,e[i])==1)
                    {
                        ans=e[i];
                        break;
                    }
                }
                cout<<"2^"<<ans<<" mod "<<n<<" = 1"<<endl;
            }
        }
        return 0;
    }
  • 相关阅读:
    Android从零开发目录
    全国软考数据库系统工程师教程(第2版) 第1章 计算机系统知识
    全国软考数据库系统工程师教程(第2版)目录
    jvm性能调优(转载)
    开博宣言
    使用C#为Uipath封装控件
    Java时间简单操作
    js限制文本框内只能输入数字
    正则表达式语法
    JVM调优浅谈
  • 原文地址:https://www.cnblogs.com/-citywall123/p/10084259.html
Copyright © 2020-2023  润新知