• HDU1024 最大m子段和


    Max Sum Plus Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 27582    Accepted Submission(s): 9617


    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     
    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     
    Output
    Output the maximal summation described above in one line.
     
    Sample Input
    1 3 1 2 3
    2 6 -1 4 -2 3 -2 3
     
    Sample Output
    6
    8
    Hint
    Huge input, scanf and dynamic programming is recommended.
     

     题意:

    求最大m子段和。

    代码:

    //最大m子段和递推公式:dp[i][j]=max(dp[i][j-1]+num[j],dp[i-1][t]+num[j]) (i<=t<=j-1)
    //优化:因为每次都要求一个最大的dp[i-1][t](i<=t<=j-1),可以每次求出来dp[i][j]时保存
    //这个值,到下一次时直接用就行了,这样每次就只用到了dp[i][j]和dp[i][j-1],可以省去一维。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn=1000006;
    const int inf=0x7fffffff;
    int dp[maxn],fdp[maxn],num[maxn];
    int main()
    {
        int m,n,maxnum;
        while(scanf("%d%d",&m,&n)==2){
            for(int i=1;i<=n;i++) scanf("%d",&num[i]);
            memset(dp,0,sizeof(dp));
            memset(fdp,0,sizeof(fdp));
            for(int i=1;i<=m;i++){
                maxnum=-inf;
                for(int j=i;j<=n;j++){
                    dp[j]=max(dp[j-1]+num[j],fdp[j-1]+num[j]);
                    fdp[j-1]=maxnum;
                    maxnum=max(maxnum,dp[j]);
                }
            }
            printf("%d
    ",maxnum);
        }
        return 0;
    }
  • 相关阅读:
    Dockerfile构建基础镜像为alpine的jdk1.8镜像
    app测试01_app测试漫谈
    ES基本操作命令
    springboot 前后端日期json格式化
    降维处理PCA
    分析鸢尾花数据集
    Python--matplotlib绘图可视化知识点整理
    模拟股票预期收益案例源代码
    np.random.normal()正态分布
    pandas
  • 原文地址:https://www.cnblogs.com/--ZHIYUAN/p/6545278.html
Copyright © 2020-2023  润新知