• POJ


    题意:求$A^{B}$的所有约数之和$mod 9901$

    思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{k}}^{c_{k}}$,那么$n$的约数之和为

    $$sum=(1+{p_{1}}^{1}+cdots+{p_{1}}^{c_{1}})*(1+{p_{2}}^{1}+cdots +{p_{2}}^{c_{2}})*cdots*(1+{p_{k}}^{1}+cdots+{p_{k}}^{c_{k}})$$

    所以对$A$质因数分解后,那么$A^{B}$的约数之和

    $$sum=(1+{p_{1}}^{1}+cdots+{p_{1}}^{B*c_{1}})*(1+{p_{2}}^{1}+cdots +{p_{2}}^{B*c_{2}})*cdots*(1+{p_{k}}^{1}+cdots+{p_{k}}^{B*c_{k}})$$

    上式中每个括号内都是等比数列,利用分治法对等比数列求和,设$sum(p,c)=1+p+p^2+cdots+p^{c}$

    当$c$为奇数时

    $$sum(p,c)=(1+p+cdots+p^{frac{c-1}{2}})+(p^{frac{c+1}{2}}+cdots+p^c)=(1+p^{frac{c+1}{2}})*sum(p,frac{c-1}{2})$$

    当$c$为偶数时

    $$sum(p,c)=(1+p+cdots+p^{frac{c}{2}-1})+(p^{frac{c}{2}}+p^{frac{c}{2}+1}cdots+p^{c-1})+p^c=(1+p^{frac{c}{2}})*sum(p,frac{c}{2}-1)+p^c$$

    当$c$等于$0$,结束递归, 返回$1$即可

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cmath>
    
    using namespace std;
    
    typedef long long ll;
    
    const int N = 110;
    const ll mod = 9901;
    
    ll a, b;
    ll p[N], c[N], m;
    
    void divide(ll n)
    {
        m = 0;
        for (ll i = 2; i <= sqrt(n); i++) {
            if (0 == n % i) {
                p[++m] = i, c[m] = 0;
                while (0 == n % i) n /= i, c[m]++;
            }
        }
        if (n > 1) p[++m] = n, c[m] = 1;
        return;
    }
    
    ll power(ll a, ll b, ll p)
    {
        ll res = 1;
        while (b) {
            if (b & 1) res = (res * a) % p;
            a = (a * a) % p, b >>= 1;
        }
        return res % p;
    }
    
    ll sum(ll p, ll c)
    {
        if (0 == c) return 1;
        if (1 == c % 2) {
            ll tp1 = (1 + power(p, (c + 1) / 2, mod)) % mod;
            ll tp2 = sum(p, (c - 1) / 2) % mod;
            return tp1 * tp2 % mod;
        }
        else {
            ll tp1 = (1 + power(p, c / 2, mod)) % mod;
            ll tp2 = sum(p, c / 2 - 1) % mod;
            return (tp1 * tp2 % mod + power(p, c, mod)) % mod;
        }
    }
    
    int main()
    {
        scanf("%lld%lld", &a, &b);
        divide(a);
        if (0 == a) printf("0
    ");
        else {
            ll res = 1;
            for (int i = 1; i <= m; i++)
                res = res * sum(p[i], b * c[i]) % mod;
            printf("%lld
    ", res);
        }
        return 0;
    }
  • 相关阅读:
    c#查找窗口的两种办法
    也说自动化测试
    定位bug的基本要求
    c#调用GetModuleFileNameEx获取进程路径
    对比PG数据库结构是否一致的方法
    C#调用endtask
    提bug
    接口测试的结果校验
    ProcessExplorer使用分享
    C++如何在r3静态调用NT函数
  • 原文地址:https://www.cnblogs.com/zzzzzzy/p/12221260.html
Copyright © 2020-2023  润新知