• Til the Cows Come Home (最短路)


    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1.

    题意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离

    Dijkstra的模板题

    #include <cstdio>
    using namespace std;
    #define inf 1<<29
    #define MAXV 1005
    
    int map[MAXV][MAXV];
    int n,m;
    
    void dijkstra(){
        int i,j,min,v;
        int d[MAXV];
        bool vis[MAXV];
    
        for(i=1;i<=n;i++){
            vis[i]=0;
            d[i]=map[1][i];
        }
    
        for(i=1;i<=n;i++){
            min=inf;
            for(j=1;j<=n;j++)
                if(!vis[j] && d[j]<min){
                    v=j;
                    min=d[j];
                }
            vis[v]=1;
    
            for(j=1;j<=n;j++)
                if(!vis[j] && d[j]>map[v][j]+d[v])
                    d[j]=map[v][j]+d[v];
        }
        printf("%d
    ",d[n]);
    }
    
    int main(){
        int i,j,a,b,c;
        while(~scanf("%d%d",&m,&n)){
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    if(i==j)
                        map[i][i]=0;
                    else 
                        map[i][j]=map[j][i]=inf;
    
            for(i=1;i<=m;i++){
                scanf("%d%d%d",&a,&b,&c);
                if(map[a][b]>c) .
                    map[a][b]=map[b][a]=c;
            }
            dijkstra();
        }
        return 0;
    }
    

      

     
  • 相关阅读:
    C#中静态变量 静态类 静态成员
    C#类型转换
    ASP.NET页面跳转及传值方式
    ADO.NET
    C#方法的参数类型
    Oracle %TYPE 和 %ROWTYPE
    静态页面与动态页面
    相对路径和绝对路径
    45 个非常有用的 Oracle 查询语句(转)
    ASP.NET MVC 之表格分页
  • 原文地址:https://www.cnblogs.com/zzzying/p/7307610.html
Copyright © 2020-2023  润新知