• 【Hadoop离线基础总结】Hadoop High AvailabilityHadoop基础环境增强



    简单介绍

    • Hadoop HA 概述

      HA(High Available) —— 高可用,是保证业务连续性的有效解决方案。一般有两个或两个以上的节点,分为活动节点(Active)备用节点(Standby)。通常把正在执行业务的称为活动节点,而作为活动节点的一个备份的则称为备用节点。当活动节点出现问题,导致正在运行的业务(任务)不能正常运行时,备用节点此时就会侦测到,并立即接续活动节点来执行业务。从而实现业务的不中断或短暂中断。
      Hadoop1.X版本,NN是HDFS集群的单点故障点,每一个集群只有一个NN,如果这个机器或进程不可用,整个集群就无法使用。为了解决这个问题,出现了一堆针对HDFS HA的解决方案(如:Linux HA, VMware FT, shared NAS+NFS, BookKeeper, QJM/Quorum Journal Manager, BackupNode等)。
      在HA具体实现方法不同情况下,HA框架的流程是一致的, 不一致的就是如何存储、管理、同步edits编辑日志文件。
      在Active NN和Standby NN之间要有个共享的存储日志的地方,Active NN把edit Log写到这个共享的存储日志的地方,Standby NN去读取日志然后执行,这样Active和Standby NN内存中的HDFS元数据保持着同步。一旦发生主从切换Standby NN可以尽快接管Active NN的工作。

    • 集群搭建规划

      在这里插入图片描述


    集群搭建

    • 第一步:停止服务

      要停止hadoop集群的所有服务,包括HDFS、yarn、impala、hive、oozie、hue等

      # 停止oozie
      cd /export/servers/oozie-4.1.0-cdh5.14.0
      bin/oozied.sh stop
      
      hue	impala	hive在进程中杀死即可
      
      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/stop-dfs.sh
      sbin/stop-yarn.sh
      sbin/mr-jobhistory-daemon.sh stop historyserver
      
    • 第二步:启动所有节点的ZooKeeper

      cd /export/servers/zookeeper-3.4.5-cdh5.14.0
      bin/zkServer.sh start
      
    • 第三步:更改配置文件

      core-site.xml

      <!--
      <property>
      	<name>fs.default.name</name>
      	<value>hdfs://192.168.52.100:8020</value>
      </property>
      <property>
      	<name>hadoop.tmp.dir</name>
      	<value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/tempDatas</value>
      </property>
      
      <property>
      	<name>io.file.buffer.size</name>
      	<value>4096</value>
      </property>
      
      <property>
      	<name>fs.trash.interval</name>
      	<value>10080</value>
      </property>
      -->	
      
      <property>
      	<name>ha.zookeeper.quorum</name>
      	<value>node01.hadoop.com:2181,node02.hadoop.com:2181,node03.hadoop.com:2181</value>
      </property>
      
      <property>
      	<name>fs.defaultFS</name>
      	<value>hdfs://hann</value>
      </property>
      <!--  缓冲区大小,实际工作中根据服务器性能动态调整 -->
      <property>
      	<name>io.file.buffer.size</name>
      	<value>4096</value>
      </property>
      
      <property>
      	<name>hadoop.tmp.dir</name>
      	<value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/tempDatas</value>
      </property>
      
      <property>
      	<name>fs.trash.interval</name>
      	<value>10080</value>
      </property>
       
      <property>
      	<name>hadoop.proxyuser.root.hosts</name>
      	<value>*</value>
      </property>
      <property>
      	<name>hadoop.proxyuser.root.groups</name>
      	<value>*</value>
      </property>
      

      hdfs-site.xml

      <!-- NameNode存储元数据信息的路径,实际工作中,一般先确定磁盘的挂载目录,然后多个目录用,进行分割   --> 
      	<!--   集群动态上下线 
      	<property>
      		<name>dfs.hosts</name>
      		<value>/export/servers/hadoop-2.7.4/etc/hadoop/accept_host</value>
      	</property>
      	
      	<property>
      		<name>dfs.hosts.exclude</name>
      		<value>/export/servers/hadoop-2.7.4/etc/hadoop/deny_host</value>
      	</property>
      	 -->
      	 
      	 <!-- 
      	 <property>
      			<name>dfs.namenode.secondary.http-address</name>
      			<value>node01:50090</value>
      	</property>
      
      	<property>
      		<name>dfs.namenode.http-address</name>
      		<value>node01:50070</value>
      	</property>
      	<property>
      		<name>dfs.namenode.name.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/namenodeDatas</value>
      	</property>
      
      	<property>
      		<name>dfs.datanode.data.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/datanodeDatas</value>
      	</property>
      	
      	<property>
      		<name>dfs.namenode.edits.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/edits</value>
      	</property>
      	
      
      	<property>
      		<name>dfs.namenode.checkpoint.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/snn/name</value>
      	</property>
      	<property>
      		<name>dfs.namenode.checkpoint.edits.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/snn/edits</value>
      	</property>
      
      	<property>
      		<name>dfs.replication</name>
      		<value>1</value>
      	</property>
      
      	<property>
      		<name>dfs.permissions</name>
      		<value>false</value>
      	</property>
      
      	<property>
      		<name>dfs.blocksize</name>
      		<value>134217728</value>
      	</property>
      	
      	<property>
      	  <name>dfs.webhdfs.enabled</name>
      	  <value>true</value>
      	</property>
      
      	<property>
      		<name>dfs.client.read.shortcircuit</name>
      		<value>true</value>
      	</property>
      	<property>
      		<name>dfs.domain.socket.path</name>
      		<value>/var/run/hdfs-sockets/dn</value>
      	</property>
      	<property>
      		<name>dfs.client.file-block-storage-locations.timeout.millis</name>
      		<value>10000</value>
      	</property>
      	<property>
      		<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
      		<value>true</value>
      	</property>
      
      	<property>
      	  <name>dfs.webhdfs.enabled</name>
      	  <value>true</value>
      	</property>
      	
      	-->	
      	<property>
      		<name>dfs.nameservices</name>
      		<value>hann</value>
      	</property>
      
      		<property>
      		<name>dfs.ha.namenodes.hann</name>
      		<value>nn1,nn2</value>
      	</property>
      	<property>
      		<name>dfs.namenode.rpc-address.hann.nn1</name>
      		<value>node01.hadoop.com:8020</value>
      	</property>
      	<property>
      		<name>dfs.namenode.rpc-address.hann.nn2</name>
      		<value>node02.hadoop.com:8020</value>
      	</property>
      	
      	<property>
      		<name>dfs.namenode.servicerpc-address.hann.nn1</name>
      		<value>node01.hadoop.com:8022</value>
      	</property>
      	<property>
      		<name>dfs.namenode.servicerpc-address.hann.nn2</name>
      		<value>node02.hadoop.com:8022</value>
      	</property>
      	
      	
      	<property>
      		<name>dfs.namenode.http-address.hann.nn1</name>
      		<value>node01.hadoop.com:50070</value>
      	</property>
      	<property>
      		<name>dfs.namenode.http-address.hann.nn2</name>
      		<value>node02.hadoop.com:50070</value>
      	</property>
      
      	
      		<property>
      		<name>dfs.namenode.shared.edits.dir</name>
      		<value>qjournal://node01.hadoop.com:8485;node02.hadoop.com:8485;node03.hadoop.com:8485/hann</value>
      	</property>
      	
      		<property>
      		<name>dfs.journalnode.edits.dir</name>
      		<value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/jn</value>
      	</property>
      	
      	<property>
      		<name>dfs.client.failover.proxy.provider.hann</name>
      		<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
      	</property>
      	
      	
      
      	<property>
      		<name>dfs.ha.fencing.methods</name>
      		<value>sshfence</value>
      	</property>
      
      	<property>
      		<name>dfs.ha.fencing.ssh.private-key-files</name>
      		<value>/root/.ssh/id_rsa</value>
      	</property>
      	
      		<property>
      		<name>dfs.ha.automatic-failover.enabled</name>
      		<value>true</value>
      	</property>
      	<property>
      		<name>dfs.namenode.name.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/namenodeDatas</value>
      		
      	</property>
      	<property>
      		<name>dfs.namenode.edits.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/edits</value>
      	</property>
      	
      	<property>
      		<name>dfs.datanode.data.dir</name>
      		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/datanodeDatas</value>
      	</property>
      
      
      
      	<property>
      		<name>dfs.replication</name>
      		<value>3</value>
      	</property>
      
      	<property>
      		<name>dfs.permissions</name>
      		<value>false</value>
      	</property>
      
      		<property>
      		<name>dfs.blocksize</name>
      		<value>134217728</value>
      	</property>
      	
      	<property>
      	  <name>dfs.webhdfs.enabled</name>
      	  <value>true</value>
      	</property>
      
      	
      	
      
      	<property>
      		<name>dfs.client.read.shortcircuit</name>
      		<value>true</value>
      	</property>
      	<property>
      		<name>dfs.domain.socket.path</name>
      		<value>/var/run/hdfs-sockets/dn</value>
      	</property>
      	<property>
      		<name>dfs.client.file-block-storage-locations.timeout.millis</name>
      		<value>10000</value>
      	</property>
      	<property>
      		<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
      		<value>true</value>
      	</property>
      
      	<property>
      	  <name>dfs.webhdfs.enabled</name>
      	  <value>true</value>
      	</property>
      

      mapred-site.xml

      <!--
      	<property>
      		<name>mapreduce.framework.name</name>
      		<value>yarn</value>
      	</property>
      	<property>
      		<name>mapreduce.job.ubertask.enable</name>
      		<value>true</value>
      	</property>
      
      	<property>
      		<name>mapreduce.jobhistory.address</name>
      		<value>node01:10020</value>
      	</property>
      
      	<property>
      		<name>mapreduce.jobhistory.webapp.address</name>
      		<value>node01:19888</value>
      	</property>
      	-->
      <!--
      	<property>
      		<name>mapreduce.map.output.compress</name>
      		<value>true</value>
      	</property>
      	<property>
      		<name>mapreduce.map.output.compress.codec</name>
      		<value>org.apache.hadoop.io.compress.SnappyCodec</value>
      	</property>
      
      
      	 <property>
                      <name>mapreduce.output.fileoutputformat.compress</name>
                      <value>true</value>
              </property>
      
      
      	 <property>
                      <name>mapreduce.output.fileoutputformat.compress.type</name>
                      <value>RECORD</value>
              </property>
      
      	 <property>
                      <name>mapreduce.output.fileoutputformat.compress.codec</name>
                      <value>org.apache.hadoop.io.compress.SnappyCodec</value>
              </property>
      -->
      <!--指定运行mapreduce的环境是yarn -->
      <property>
              <name>mapreduce.framework.name</name>
              <value>yarn</value>
      </property>
      <!-- MapReduce JobHistory Server IPC host:port -->
      <property>
              <name>mapreduce.jobhistory.address</name>
              <value>node03:10020</value>
      </property>
      <!-- MapReduce JobHistory Server Web UI host:port -->
      <property>
              <name>mapreduce.jobhistory.webapp.address</name>
              <value>node03:19888</value>
      </property>
      <!-- The directory where MapReduce stores control files.默认 ${hadoop.tmp.dir}/mapred/system -->
      <property>
              <name>mapreduce.jobtracker.system.dir</name>
              <value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/jobtracker</value>
      </property>
      <!-- The amount of memory to request from the scheduler for each map task. 默认 1024-->
      <property>
              <name>mapreduce.map.memory.mb</name>
              <value>1024</value>
      </property>
      <!-- <property>
                      <name>mapreduce.map.java.opts</name>
                      <value>-Xmx1024m</value>
              </property> -->
      <!-- The amount of memory to request from the scheduler for each reduce task. 默认 1024-->
      <property>
              <name>mapreduce.reduce.memory.mb</name>
              <value>1024</value>
      </property>
      <!-- <property>
                     <name>mapreduce.reduce.java.opts</name>
                     <value>-Xmx2048m</value>
              </property> -->
      <!-- 用于存储文件的缓存内存的总数量,以兆字节为单位。默认情况下,分配给每个合并流1MB,给个合并流应该寻求最小化。默认值100-->
      <property>
              <name>mapreduce.task.io.sort.mb</name>
              <value>100</value>
      </property>
       
      <!-- <property>
              <name>mapreduce.jobtracker.handler.count</name>
              <value>25</value>
              </property>-->
      <!-- 整理文件时用于合并的流的数量。这决定了打开的文件句柄的数量。默认值10-->
      <property>
              <name>mapreduce.task.io.sort.factor</name>
              <value>10</value>
      </property>
      <!-- 默认的并行传输量由reduce在copy(shuffle)阶段。默认值5-->
      <property>
              <name>mapreduce.reduce.shuffle.parallelcopies</name>
              <value>25</value>
      </property>
      <property>
              <name>yarn.app.mapreduce.am.command-opts</name>
              <value>-Xmx1024m</value>
      </property>
      <!-- MR AppMaster所需的内存总量。默认值1536-->
      <property>
              <name>yarn.app.mapreduce.am.resource.mb</name>
              <value>1536</value>
      </property>
      <!-- MapReduce存储中间数据文件的本地目录。目录不存在则被忽略。默认值${hadoop.tmp.dir}/mapred/local-->
      <property>
              <name>mapreduce.cluster.local.dir</name>
              <value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/mapreduce/local</value>
      </property>
      

      yarn-site.xml

      <!--
      	<property>
      		<name>yarn.resourcemanager.hostname</name>
      		<value>node01</value>
      	</property>
      	<property>
      		<name>yarn.nodemanager.aux-services</name>
      		<value>mapreduce_shuffle</value>
      	</property>
      	
      	<property>
      		<name>yarn.log-aggregation-enable</name>
      		<value>true</value>
      	</property>
      	<property>
      		<name>yarn.log-aggregation.retain-seconds</name>
      		<value>604800</value>
      	</property>
      	-->
      	
      	<!-- Site specific YARN configuration properties -->
      <!-- 是否启用日志聚合.应用程序完成后,日志汇总收集每个容器的日志,这些日志移动到文件系统,例如HDFS. -->
      <!-- 用户可以通过配置"yarn.nodemanager.remote-app-log-dir"、"yarn.nodemanager.remote-app-log-dir-suffix"来确定日志移动到的位置 -->
      <!-- 用户可以通过应用程序时间服务器访问日志 -->
      
      <!-- 启用日志聚合功能,应用程序完成后,收集各个节点的日志到一起便于查看 -->
      	<property>
      			<name>yarn.log-aggregation-enable</name>
      			<value>true</value>
      	</property>
       
      
      <!--开启resource manager HA,默认为false--> 
      <property>
              <name>yarn.resourcemanager.ha.enabled</name>
              <value>true</value>
      </property>
      <!-- 集群的Id,使用该值确保RM不会做为其它集群的active -->
      <property>
              <name>yarn.resourcemanager.cluster-id</name>
              <value>mycluster</value>
      </property>
      <!--配置resource manager  命名-->
      <property>
              <name>yarn.resourcemanager.ha.rm-ids</name>
              <value>rm1,rm2</value>
      </property>
      <!-- 配置第一台机器的resourceManager -->
      <property>
              <name>yarn.resourcemanager.hostname.rm1</name>
              <value>node03.hadoop.com</value>
      </property>
      <!-- 配置第二台机器的resourceManager -->
      <property>
              <name>yarn.resourcemanager.hostname.rm2</name>
              <value>node02.hadoop.com</value>
      </property>
      
      <!-- 配置第一台机器的resourceManager通信地址 -->
      <property>
              <name>yarn.resourcemanager.address.rm1</name>
              <value>node03.hadoop.com:8032</value>
      </property>
      <property>
              <name>yarn.resourcemanager.scheduler.address.rm1</name>
              <value>node03.hadoop.com:8030</value>
      </property>
      <property>
              <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
              <value>node03.hadoop.com:8031</value>
      </property>
      <property>
              <name>yarn.resourcemanager.admin.address.rm1</name>
              <value>node03.hadoop.com:8033</value>
      </property>
      <property>
              <name>yarn.resourcemanager.webapp.address.rm1</name>
              <value>node03.hadoop.com:8088</value>
      </property>
      
      <!-- 配置第二台机器的resourceManager通信地址 -->
      <property>
              <name>yarn.resourcemanager.address.rm2</name>
              <value>node02.hadoop.com:8032</value>
      </property>
      <property>
              <name>yarn.resourcemanager.scheduler.address.rm2</name>
              <value>node02.hadoop.com:8030</value>
      </property>
      <property>
              <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
              <value>node02.hadoop.com:8031</value>
      </property>
      <property>
              <name>yarn.resourcemanager.admin.address.rm2</name>
              <value>node02.hadoop.com:8033</value>
      </property>
      <property>
              <name>yarn.resourcemanager.webapp.address.rm2</name>
              <value>node02.hadoop.com:8088</value>
      </property>
      <!--开启resourcemanager自动恢复功能-->
      <property>
              <name>yarn.resourcemanager.recovery.enabled</name>
              <value>true</value>
      </property>
      <!--在node3上配置rm1,在node2上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改,其他机器上不配置此项-->
      	<property>       
      		<name>yarn.resourcemanager.ha.id</name>
      		<value>rm1</value>
             <description>If we want to launch more than one RM in single node, we need this configuration</description>
      	</property>
      	   
      	   <!--用于持久存储的类。尝试开启-->
      <property>
              <name>yarn.resourcemanager.store.class</name>
              <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
      </property>
      <property>
              <name>yarn.resourcemanager.zk-address</name>
              <value>node01.hadoop.com:2181,node02.hadoop.com:2181,node03.hadoop.com:2181</value>
              <description>For multiple zk services, separate them with comma</description>
      </property>
      <!--开启resourcemanager故障自动切换,指定机器--> 
      <property>
              <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
              <value>true</value>
              <description>Enable automatic failover; By default, it is enabled only when HA is enabled.</description>
      </property>
      <property>
              <name>yarn.client.failover-proxy-provider</name>
              <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
      </property>
      <!-- 允许分配给一个任务最大的CPU核数,默认是8 -->
      <property>
              <name>yarn.nodemanager.resource.cpu-vcores</name>
              <value>4</value>
      </property>
      <!-- 每个节点可用内存,单位MB -->
      <property>
              <name>yarn.nodemanager.resource.memory-mb</name>
              <value>512</value>
      </property>
      <!-- 单个任务可申请最少内存,默认1024MB -->
      <property>
              <name>yarn.scheduler.minimum-allocation-mb</name>
              <value>512</value>
      </property>
      <!-- 单个任务可申请最大内存,默认8192MB -->
      <property>
              <name>yarn.scheduler.maximum-allocation-mb</name>
              <value>512</value>
      </property>
      <!--多长时间聚合删除一次日志 此处-->
      <property>
              <name>yarn.log-aggregation.retain-seconds</name>
              <value>2592000</value><!--30 day-->
      </property>
      <!--时间在几秒钟内保留用户日志。只适用于如果日志聚合是禁用的-->
      <property>
              <name>yarn.nodemanager.log.retain-seconds</name>
              <value>604800</value><!--7 day-->
      </property>
      <!--指定文件压缩类型用于压缩汇总日志-->
      <property>
              <name>yarn.nodemanager.log-aggregation.compression-type</name>
              <value>gz</value>
      </property>
      <!-- nodemanager本地文件存储目录-->
      <property>
              <name>yarn.nodemanager.local-dirs</name>
              <value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/yarn/local</value>
      </property>
      <!-- resourceManager  保存最大的任务完成个数 -->
      <property>
              <name>yarn.resourcemanager.max-completed-applications</name>
              <value>1000</value>
      </property>
      <!-- 逗号隔开的服务列表,列表名称应该只包含a-zA-Z0-9_,不能以数字开始-->
      <property>
              <name>yarn.nodemanager.aux-services</name>
              <value>mapreduce_shuffle</value>
      </property>
      
      <!--rm失联后重新链接的时间--> 
      <property>
              <name>yarn.resourcemanager.connect.retry-interval.ms</name>
              <value>2000</value>
      </property>
      

      把这四个发送到node02,node03,node02的yarn-site.xml要把yarn.resourcemanager.ha.id的值修改为rm2

      scp core-site.xml hdfs-site.xml mapred-site.xml yarn-site.xml node02:$PWD
      scp core-site.xml hdfs-site.xml mapred-site.xml yarn-site.xml node03:$PWD
      
    • 第四步:启动服务

      1.在node01初始化zookeeper

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      bin/hdfs zkfc -formatZK
      

      2.启动journalNode,三台机器都要执行

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/hadoop-daemon.sh start journalnode
      

      3.初始化journalNode在node01执行即可

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      bin/hdfs namenode -initializeSharedEdits -force
      

      4.在node01启动NameNode

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/hadoop-daemon.sh start namenode
      

      5.在node02启动Namenode

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      bin/hdfs namenode -bootstrapStandby
      sbin/hadoop-daemon.sh start namenode
      

      6.在node01启动所有节点的datanode

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/hadoop-daemons.sh start datanode
      

      7.在node01和node02启动zkfc

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/hadoop-daemon.sh start zkfc
      

      8.在node02和node03启动yarn

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/start-yarn.sh
      

      8.在node03启动jobhistoryserver

      cd /export/servers/hadoop-2.6.0-cdh5.14.0
      sbin/mr-jobhistory-daemon.sh start historyserver
      
  • 相关阅读:
    js 操作cookie
    Java——简单实现学生管理系统
    虚方法--重载
    读取Devexpress内部的图标
    ToolTipController 事件触发显示时 避免闪烁的处理方法
    windowsAPI遍历文件夹(速度高于递归)
    XAF去掉View页面的编辑器
    禁用弹出提示框
    设置程序集(dll)引用路径,整洁美观
    WPF移动Window窗体(鼠标点击左键移动窗体自定义行为)
  • 原文地址:https://www.cnblogs.com/zzzsw0412/p/12772432.html
Copyright © 2020-2023  润新知