• 机器学习003-Kernel


    参考: 李航《统计学习方法》


    ​ 【定义】设X是输入空间,又设F为特征空间,如果存在一个从XF的映射

    [phi(x):X→F ]

    使得所有的x,z∈X,函数K(x,z)满足条件

    [K(x,z)=phi(x)·phi(z) ]

    则称K(x,z)核函数Φ(x)为映射函数,· 为内积运算。

    ​ 核函数的想法是,在学习与预测中只定义核函数K(x,z),而不显式地定义Φ。直接计算K(x,z)比较容易,而通过Φ(x),Φ(z)计算K(x,z)并不容易。

    ​ 【注意】特征空间F一般是高维的,对于给定的K(x,z)FΦ的取法并不唯一。


    常用的核函数:

    1. 多项式核函数(polynomial kernel function)

      [K(x,z)=(x·z+1)^p ]

    2. 高斯核函数(Guussian kernel function)

      [K(x,z)=exp(-frac{||x-z||^2}{2sigma^2}) ]

      个人理解】这些常用的核函数,我尚未去验证,但姑且这样理解:X->F的路径不唯一(F也可以不同),即Φ可以有千变万化的选择,那我们只要可以从核函数推导出其中一种Φ即可验证该核函数是合理的。而为什么这些核函数比较常用,即这些核函数的特点和优点在哪里,我暂时不去研讨。

      可了解一下《统计学习方法》的“正定核”。


    核函数的应用:

    见文章《PCA与LLE的理解》中的kernel PCA

    见文章《LDA的理解》中的kernel LDA

  • 相关阅读:
    OpenCV学习
    STL容器
    实践教学小程序(2022529)
    抖音下载 Elon
    抖音极速版下载 Elon
    vue脚手架快速搭建
    Vue elementUi组件库 input输入内容没有回显
    Django admin后台使用markdown
    Vue elementUi组件中使用下拉框,eldropdownitem @click事件无效
    MinGWw64 离线包安装方法
  • 原文地址:https://www.cnblogs.com/zzzack/p/9749638.html
Copyright © 2020-2023  润新知