• 数列分块


    数列分块入门1

    区间修改+单点查询
    可以维护一个lazy,分成好多块之后。
    区间内覆盖的整个块的直接用每个块的lazy+c, 没有覆盖整个块了就直接暴力修改。
    复杂度(operatorname O(n sqrt n))

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 50010
    #define M 1010
    
    using namespace std;
    int n, tot, ans, block, num;
    int l[N], r[N], belong[N];
    ll a[N], lazy[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	for (int i = 1; i <= num; i++) 
    		l[i] = (i - 1) * block + 1, r[i] = i * block;
    	r[num] = n;
    	for (int i = 1; i <= n; i++)
    		belong[i] = (i - 1) / block + 1;
    }
    
    void update(int x, int y, int c) {
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++) a[i] += c;
    		return;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) a[i] += c;
    	for (int i = l[belong[y]]; i <= y; i++) a[i] += c;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) lazy[i] += c;
    }
    
    ll query(int x) {
    	return a[x] + lazy[belong[x]];
    }
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n; i++) a[i] = read();
    	build();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		opt = read(), x = read(), y = read(), c = read();
    		if (opt == 0) update(x, y, c);
    		else printf("%lld
    ", query(y));
    	}
    	return 0;
    }
    

    数列分块入门2

    区间修改
    查询区间l, r内有多少个比c 小的数

    区间修改的话就按照上边那种方法修改。
    查询我们可以一开始就给每一个块内的答案排序,然后二分查找就行了。
    遇到不是完整的块直接暴力修改,然后重新排序。

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 50010
    #define M 1010
    
    using namespace std;
    int n, m, num, block;
    int l[N], r[N], belong[N]; int lazy[N], a[N];
    vector<ll> vec[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	r[num] = n;
    	for (int i = 1; i <= n; i++)
    		belong[i] = (i - 1) / block + 1, vec[belong[i]].push_back(a[i]);
    	for (int i = 1; i <= num; i++) {
    		l[i] = (i - 1) * block + 1, r[i] = i * block;
    		sort(vec[i].begin(), vec[i].end());
    	}
    }
    
    void resort(int x) {
    	vec[x].clear();
    	for (int i = l[x]; i <= r[x]; i++) vec[x].push_back(a[i]);
    	sort(vec[x].begin(), vec[x].end());
    }
    
    void update(int x, int y, int c) {
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++) a[i] += c;
    		resort(belong[x]);
    		return;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) a[i] += c;
    	for (int i = l[belong[y]]; i <= y; i++) a[i] += c;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) lazy[i] += c;
    	resort(belong[x]), resort(belong[y]);
    }
    
    int query(int x, int y, int c) {
    	int ans = 0;
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++)
    			if (a[i] + lazy[belong[x]] < c) ans++;
    		return ans;
    	}
    	for (int i = x; i <= r[belong[x]]; i++)
    		if (a[i] + lazy[belong[x]] < c) ans++;
    	for (int i = l[belong[y]]; i <= y; i++)
    		if (a[i] + lazy[belong[y]] < c) ans++;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++)
    		ans += lower_bound(vec[i].begin(), vec[i].end(), c - lazy[i]) - vec[i].begin();
    	return ans;
    }
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n; i++) a[i] = read();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		opt = read(), x = read(), y = read(), c = read();
    		if (opt == 0) update(x, y, c);
    		else printf("%d
    ", query(x, y, c * c));
    	}
    	return 0;
    }
    

    数列分块入门3

    区间修改+查询区间内某个数的前驱
    和上边那种做法类似。

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 100010
    #define M 1010
    
    using namespace std;
    int n, num, block;
    int l[N], r[N], lazy[N], belong[N], a[N];
    vector<int> vec[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	r[num] = n;
    	for (int i = 1; i <= n; i++)
    		belong[i] = (i - 1) / block + 1, vec[belong[i]].push_back(a[i]);
    	for (int i = 1; i <= num; i++) {
    		l[i] = (i - 1) * block + 1, r[i] = i * block;
    		sort(vec[i].begin(), vec[i].end());
    	}
    }
    
    void resort(int x) {
    	vec[x].clear();
    	for (int i = l[x]; i <= r[x]; i++) vec[x].push_back(a[i]);
    	sort(vec[x].begin(), vec[x].end());
    }
    
    void update(int x, int y, int c) {
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++) a[i] += c;
    		resort(belong[x]);
    		return;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) a[i] += c;
    	for (int i = l[belong[y]]; i <= y; i++) a[i] += c;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) lazy[i] += c;
    	resort(belong[x]), resort(belong[y]);
    }
    
    int query(int x, int y, int c) {
    	int ans = -1;
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++)
    			if (a[i] + lazy[belong[x]] < c)
    				ans = max(ans, a[i] + lazy[belong[i]]);
    		return ans;
    	}
    	for (int i = x; i <= r[belong[x]]; i++)
    		if (a[i] + lazy[belong[i]] < c) ans = max(ans, a[i] + lazy[belong[i]]);
    	for (int i = l[belong[y]]; i <= y; i++)
    		if (a[i] + lazy[belong[i]] < c) ans = max(ans, a[i] + lazy[belong[i]]);
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) {
    		int pos = lower_bound(vec[i].begin(), vec[i].end(), c - lazy[i]) - vec[i].begin();
    		if (pos >= 1) ans = max(ans, vec[i][pos - 1] + lazy[i]);
    	}
    	return ans;
    }
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n; i++) a[i] = read();
    	build();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		opt = read(), x = read(), y = read(), c = read();
    		if (opt == 0) update(x, y, c);
    		else printf("%d
    ", query(x, y, c));
    	}
    	return 0;
    }
    

    数列分块入门4

    区间修改+区间查询
    可以开一个sum来存每一个块里的权值和

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 50010
    #define M 1010
    
    using namespace std;
    int n, num, block;
    int l[N], r[N], belong[N]; ll sum[N], lazy[N], a[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	r[num] = n;
    	for (int i = 1; i <= n; i++) belong[i] = (i - 1) / block + 1;
    	for (int i = 1; i <= num; i++) 
    		l[i] = (i - 1) * block + 1, r[i] = i * block;
    	for (int i = 1; i <= num; i++)
    		for (int j = l[i]; j <= r[i]; j++)
    			sum[i] += a[j];
    }
    
    void update(int x, int y, ll c) {
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++) a[i] += c;
    		sum[belong[x]] += (y - x + 1) * c;
    		return;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) a[i] += c;
    	for (int i = l[belong[y]]; i <= y; i++) a[i] += c;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) lazy[i] += c;
    	sum[belong[x]] += (r[belong[x]] - x + 1) * c;
    	sum[belong[y]] += (y - l[belong[y]] + 1) * c;
    }
    
    ll query(int x, int y, ll c) {
    	ll mod = c + 1, ans = 0;
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++)
    			ans = (ans + a[i] + lazy[belong[i]]) % mod;
    		return ans;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) 
    		ans = (ans + a[i] + lazy[belong[i]]) % mod;
    	for (int i = l[belong[y]]; i <= y; i++) 
    		ans = (ans + a[i] + lazy[belong[i]]) % mod;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) 
    		ans = (ans + sum[i] + block * lazy[i]) % mod;
    	return ans;
    }
    
    signed main() {
    	n = read();
    	for (int i = 1; i <= n; i++) a[i] = read();
    	build();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		opt = read(), x = read(), y = read(), c = read();
    		if (opt == 0) update(x, y, c);
    		else printf("%lld
    ", query(x, y, c));
    	}
    	return 0;
    }
    

    数列分块入门5

    区间开平方。
    众所周知(sqrt{sqrt{sqrt{sqrt{sqrt {2^{32}}}}}} = 1)
    所以一个区间开平方开5次就差不多是1或者0
    这样的区间不需要再开方。
    这个东西很坑
    一定要有中间那个int要不然会有精度差,我也不知道为啥。

    for (int i = x; i <= y; i++)
    	tmp += (a[i] - (int)sqrt(a[i])), a[i] = sqrt(a[i]);
    
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 50010
    #define M 1010
    
    using namespace std;
    int n, num, block;
    int l[N], r[N], belong[N]; ll a[N], sum[N], vis[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	r[num] = n;
    	for (int i = 1; i <= n; i++) belong[i] = (i - 1) / block + 1;
    	for (int i = 1; i <= num; i++)
    		l[i] = (i - 1) * block + 1, r[i] = i * block;
    	for (int i = 1; i <= num; i++)
    		for (int j = l[i]; j <= r[i]; j++) sum[i] += a[j];
    }
    
    void update(int x, int y) {
    	ll tmp = 0;
    	if (belong[x] == belong[y]) {
    		if (vis[belong[x]]) return;
    		for (int i = x; i <= y; i++)
    			tmp += (a[i] - (int)sqrt(a[i])), a[i] = sqrt(a[i]);
    		sum[belong[x]] -= tmp;
    		return;
    	}
    	if (!vis[belong[x]]) 
    		for (int i = x; i <= r[belong[x]]; i++)
    			tmp += a[i] - (int)sqrt(a[i]), a[i] = sqrt(a[i]);
    	sum[belong[x]] -= tmp;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) {
    		tmp = 0;
    		if (vis[i]) continue;
    		for (int j = l[i]; j <= r[i]; j++)
    			tmp += a[j] - (int)sqrt(a[j]), a[j] = sqrt(a[j]);
    		sum[i] -= tmp;
    		if (tmp == 0) vis[i] = 1;
    	}
    	tmp = 0;
    	if (!vis[belong[y]]) 
    		for (int i = l[belong[y]]; i <= y; i++)
    			tmp += a[i] - (int)sqrt(a[i]), a[i] = sqrt(a[i]);
    	sum[belong[y]] -= tmp;
    }
    
    int query(int x, int y) {
    	int ans = 0;
    	if (belong[x] == belong[y]) {
    		for (int i = x; i <= y; i++) ans += a[i];
    		return ans;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) ans += a[i];
    	for (int i = l[belong[y]]; i <= y; i++) ans += a[i];
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) ans += sum[i];
    	return ans;
    }
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n; i++) a[i] = read();
    	build();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		opt = read(), x = read(), y = read(), c = read();
    		if (opt == 0) update(x, y);
    		else printf("%d
    ", query(x, y));
    	}
    	return 0;
    }
    

    数列分块入门6

    可以分成好几个块处理
    每次插入一个数的时候在某个块中暴力插入
    如果当前块大于了块的大小
    那么我们重新分配块的大小

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 100010
    
    using namespace std;
    int n, m, q, tot, ans, block, num;
    int l[N], r[N], belong[N], len[N];
    int a[1105][3005], b[1105][3005], sum[N], vis[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n), m = n;
    	num = n / block; if (n % block) num++;
    	for (int i = 1; i <= n; i++) {
    		int kuai = (i - 1) / block + 1;
    		int x = read();
    		a[kuai][++len[kuai]] = x;
        }
    }
    
    void rebuild() {
    	m += tot, tot = 0;
    	block = (int)sqrt(m);
    	int cnt = 0, lenth = 0;
    	for (int i = 1; i <= num; i++)
    		for (int j = 1; j <= len[i]; j++) {
    			cnt++;
    			int id = (cnt - 1) / block + 1;
    			b[id][++lenth] = a[i][j];
    			if (lenth == block) lenth = 0;
    		}
    	num =  m / block; if (m % block) num++;
    	for (int i = 1; i <= num; i++) {
    		if (i != num || m % block == 0) len[i] = block;
    		else len[i] = m - block * block;
    		for (int j = 1; j <= len[i]; j++) a[i][j] = b[i][j];
    	}
    }
    
    void update(int x, int y) {
    	int i, pos = 0;
    	for (i = 1; i <= block; i++) {
    		if (pos + len[i] >= x) break;
    		pos += len[i];
    	}
    	len[i]++;
    	for (int j = len[i]; j >= x - pos + 1; j--) a[i][j] = a[i][j - 1];
    	a[i][x - pos] = y;
    	tot++;
    	if (tot == block) rebuild();
    }
    
    ll query(int x) {
    	int i, pos = 0;
    	for (i = 1; i <= num; i++) {
    		if (pos + len[i] >= x) break;
    		pos += len[i];
    	}
    	return a[i][x - pos];
    }
    
    int main() {
        n = read(), tot = 0;
        build();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		opt = read(), x = read(), y = read(), c = read();
    		if (opt == 0) update(x, y);
    		else printf("%lld
    ", query(y));
        }
        return 0;
    }
    

    数列分块入门7

    判断优先级
    显然乘法优先级比假发高,
    每次更新的时候如果修改的那个块不是完整的块
    先把标记清除,然后在暴力更新。
    这个程序厌氧,loj直接wa
    忽然发现用Clang 可以过.

    //#pragma GCC optimize(2)
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 100010
    #define M 1010
    
    using namespace std;
    const int mod = 10007;
    int n, num, block;
    int l[N], r[N], lazy[N], tag[N], belong[N], a[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	for (int i = 1; i <= n; i++) belong[i] = (i - 1) / block + 1;
    	for (int i = 1; i <= num; i++) 
    		l[i] = (i - 1) * block + 1, r[i] = i * block, tag[i] = 1;
    }
    
    void update_jia(int x, int y, int c) {
    	if (belong[x] == belong[y]) {
    		for (int i = l[belong[x]]; i <= r[belong[x]]; i++)
    			a[i] = ((a[i] * tag[belong[i]]) % mod + lazy[belong[i]]) % mod;
    		lazy[belong[x]] = 0, tag[belong[x]] = 1;
    		for (int i = x; i <= y; i++) a[i] = (a[i] + c) % mod;
    		return;
    	}
    	for (int i = l[belong[x]]; i <= r[belong[x]]; i++)
    		a[i] = ((a[i] * tag[belong[i]]) % mod + lazy[belong[i]]) % mod;
    	lazy[belong[x]] = 0, tag[belong[x]] = 1;
    	for (int i = x; i <= r[belong[x]]; i++) a[i] = (a[i] + c) % mod;
    	for (int i = l[belong[y]]; i <= r[belong[y]]; i++)
    		a[i] = ((a[i] * tag[belong[i]]) % mod + lazy[belong[i]]) % mod;
    	lazy[belong[y]] = 0, tag[belong[y]] = 1;
    	for (int i = l[belong[y]]; i <= y; i++) a[i] = (a[i] + c) % mod;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) lazy[i] = (lazy[i] + c) % mod;	
    }
    
    void update_cheng(int x, int y, int c) {
    	if (belong[x] == belong[y]) {
    		for (int i = l[belong[x]]; i <= r[belong[x]]; i++)
    			a[i] = ((a[i] * tag[belong[i]]) % mod + lazy[belong[i]]) % mod;
    		lazy[belong[x]] = 0, tag[belong[x]] = 1;
    		for (int i = x; i <= y; i++) a[i] = (a[i] * c) % mod;
    		return;
    	}
    	for (int i = l[belong[x]]; i <= r[belong[x]]; i++)
    		a[i] = ((a[i] * tag[belong[i]]) % mod + lazy[belong[i]]) % mod;
    	lazy[belong[x]] = 0, tag[belong[x]] = 1;
    	for (int i = x; i <= r[belong[x]]; i++) a[i] = (a[i] * c) % mod;
    	for (int i = l[belong[y]]; i <= r[belong[y]]; i++)
    		a[i] = ((a[i] * tag[belong[i]]) % mod + lazy[belong[i]]) % mod;
    	lazy[belong[y]] = 0, tag[belong[y]] = 1;
    	for (int i = l[belong[y]]; i <= y; i++) a[i] = (a[i] * c) % mod;
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) 
    		lazy[i] = (lazy[i] * c) % mod, tag[i] = (tag[i] * c) % mod;
    }
    
    int main() {
    //	freopen("a4.in", "r", stdin);
    //	freopen("aa.out", "w", stdout);
    	scanf("%d", &n);
    	for (int i = 1; i <= n; i++) cin >> a[i], a[i] %= mod;
    	build();
    	for (int i = 1, opt, x, y, c; i <= n; i++) {
    		cin >> opt, cin >> x, cin >> y, cin >> c;
    		if (opt == 0) update_jia(x, y, c);
    		if (opt == 1) update_cheng(x, y, c);
    		if (opt == 2) printf("%d
    ", ((a[y] * tag[belong[y]]) % mod + lazy[belong[y]]) % mod);
    	}
    	return 0;
    }
    

    数列分块入门8

    与开平方类似

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define N 100010
    #define M 1010
    
    using namespace std;
    const int inf = -2147483647;
    int n, num, block;
    int l[N], r[N], lazy[N], a[N], belong[N];
    
    int read() {
    	int s = 0, f = 0; char ch = getchar();
    	while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void build() {
    	block = sqrt(n);
    	num = n / block; if (n % block) num++;
    	r[num] = n;
    	for (int i = 1; i <= n; i++) belong[i] = (i - 1) / block + 1;
    	for (int i = 1; i <= num; i++) l[i] = (i - 1) * block + 1, r[i] = i * block, lazy[i] = inf;
    }
    
    int change_query(int x, int y, int c) {
    	int ans = 0;
    	if (belong[x] == belong[y]) {
    		if (lazy[belong[x]] != inf) {
    			for (int i = l[belong[x]]; i <= r[belong[x]]; i++) a[i] = lazy[belong[i]];
    			lazy[belong[x]] = inf;
    		}
    		for (int i = x; i <= y; i++) {
    			if (a[i] == c) ans++;
    			a[i] = c;
    		}
    		return ans;
    	}
    	if (lazy[belong[x]] != inf) {
    		for (int i = l[belong[x]]; i <= r[belong[x]]; i++) a[i] = lazy[belong[i]];
    		lazy[belong[x]] = inf;
    	}
    	for (int i = x; i <= r[belong[x]]; i++) {
    		if (a[i] == c) ans++;
    		a[i] = c;
    	}
    	for (int i = belong[x] + 1; i <= belong[y] - 1; i++) {
    		if (lazy[i] != inf) {
    			if (lazy[i] == c) ans += r[belong[i]] - l[belong[i]] + 1;
    			lazy[i] = c;
    			continue; 
    		}
    		for (int j = l[i]; j <= r[i]; j++) 
    			if (a[j] == c) ans++;
    		lazy[i] = c;
    	}
    	if (lazy[belong[y]] != inf) {
    		for (int i = l[belong[y]]; i <= r[belong[y]]; i++)
    			a[i] = lazy[belong[i]];
    		lazy[belong[y]] = inf;
    	}
    	for (int i = l[belong[y]]; i <= y; i++) {
    		if (a[i] == c) ans++;
    		a[i] = c;
    	}
    	return ans;
    }
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n; i++) a[i] = read();
    	build();
    	for (int i = 1, x, y, c; i <= n; i++) {
    		x = read(), y = read(), c = read();
    		printf("%d
    ", change_query(x, y, c));
    	}
    	return 0;
    }
    
  • 相关阅读:
    2017-2018-1 20155329 《信息安全系统设计基础》第7周学习总结
    课上内容回忆
    2017-2018-1 20155329《信息安全技术》实验二——Windows口令破解
    Week6课下作业
    缓冲区溢出漏洞实验
    2017-2018-1 20155329 《信息安全系统设计基础》第6周学习总结
    20155328 《Java程序设计》实验一(Java开发环境的熟悉) 实验报告
    20155328 2016-2017-2 《Java程序设计》第六周 学习总结
    20155328 2016-2017-2 《Java程序设计》第5周学习总结
    20155328 2016-2017-2 《Java程序设计》第四周学习总结
  • 原文地址:https://www.cnblogs.com/zzz-hhh/p/13597927.html
Copyright © 2020-2023  润新知