• 排序分析


    各算法的时间复杂度
      平均时间复杂度
      插入排序 O(n^2)
      冒泡排序 O(n^2)
      选择排序 O(n^2)
      快速排序 O(n log n)
      堆排序 O(n log n)
      归并排序 O(n log n)
      基数排序 O(n)
      希尔排序 O(n^1.25)

    1 快速排序(QuickSort)

    快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。

    (1) 如果不多于1个数据,直接返回。
    (2) 一般选择序列最左边的值作为支点数据。
    (3) 将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。
    (4) 对两边利用递归排序数列。

    快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

    2 归并排序(MergeSort)

    归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

    3 堆排序(HeapSort)

    堆排序适合于数据量非常大的场合(百万数据)。

    堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

    堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

    4 Shell排序(ShellSort)

    Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。

    Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。

    5 插入排序(InsertSort)

    插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

    6 冒泡排序(BubbleSort)

    冒泡排序是最慢的排序算法。在实际运用中它是效率最低的算法。它通过一趟又一趟地比较数组中的每一个元素,使较大的数据下沉,较小的数据上升。它是O(n^2)的算法。

    7 交换排序(ExchangeSort)和选择排序(SelectSort)

    这两种排序方法都是交换方法的排序算法,效率都是 O(n2)。在实际应用中处于和冒泡排序基本相同的地位。它们只是排序算法发展的初级阶段,在实际中使用较少。

    8 基数排序(RadixSort)

    基数排序和通常的排序算法并不走同样的路线。它是一种比较新颖的算法,但是它只能用于整数的排序,如果我们要把同样的办法运用到浮点数上,我们必须了解浮点数的存储格式,并通过特殊的方式将浮点数映射到整数上,然后再映射回去,这是非常麻烦的事情,因此,它的使用同样也不多。而且,最重要的是,这样算法也需要较多的存储空间。

  • 相关阅读:
    【连载】【FPGA黑金开发板】Verilog HDL那些事儿VGA(二十)
    【黑金动力社区】【FPGA黑金开发板】Verilog HDL的礼物 Verilog HDL扫盲文
    FPGA黑金开发板勘误
    触发器入门(转)
    SQL Server 索引结构及其使用(三)[转]
    SQL Server 索引结构及其使用(一)(转)
    项目开发管理二(转)
    Ajax在网页中的简单应用
    Ajax简单介绍
    Asp.Net异步数据绑定
  • 原文地址:https://www.cnblogs.com/zzyrunning/p/4010967.html
Copyright © 2020-2023  润新知