题解:矩阵树定理
邻接矩阵-度数矩阵(期望下)
求出来的行列式为所有(生成树边权乘积)的和
每条边边权化为 c/(1-c),最后乘上π(1-c),对1边权特殊处理一下
问题:矩阵树定理不熟,不会证明
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; const int maxn=60; const double eps=1e-9; double tmp=1; inline int dcmp(double x){ if(fabs(x)<eps)return 0; if(x>0)return 1; else return -1; } int n; double A[maxn][maxn]; double G[maxn][maxn]; double Gauss(){ --n; for(int j=1;j<=n;++j){ int maxline=j; for(int i=j+1;i<=n;++i){ if(fabs(A[i][j])>fabs(A[maxline][j]))maxline=i; } if(dcmp(A[maxline][j])==0)return 0.0; if(maxline!=j)for(int i=j;i<=n;++i)swap(A[j][i],A[maxline][i]); for(int i=j+1;i<=n;++i){ for(int k=j+1;k<=n;++k){ A[i][k]-=A[i][j]*A[j][k]/A[j][j]; } A[i][j]=0; } } double ret=1; for(int i=1;i<=n;++i)ret*=A[i][i]; return ret*tmp; } int main(){ scanf("%d",&n); for(int i=1;i<=n;++i){ for(int j=1;j<=n;++j){ scanf("%lf",&G[i][j]); if(dcmp(G[i][j]-1)==0)G[i][j]-=eps; if(i<j)tmp*=(1-G[i][j]); G[i][j]/=(1-G[i][j]); } } for(int i=1;i<=n;++i){ double sum=0; for(int j=1;j<=n;++j){ A[i][j]=G[i][j];sum+=A[i][j]; } // A[i][i]=-sum; A[i][i]=-sum; } printf("%.9f ",fabs(Gauss())); return 0; }