题解
最小费用最大流
每一天是一条边((inf-a[i], 0))
然后对于一类志愿者,
区间两端连一条((inf, c[i]))
(S)向第一个点连((inf, 0))
最后一个点向(T)连((inf, 0))
然后跑最小费用最大流
这为什么是对的?
我们的目的变成用加的那些边,把最大流量填成(inf)
求最小费用
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 2010, inf = 2147483647;
int a[N];
struct node {
int to, nxt, w, v;
}g[2000000];
int last[N], gl = 1;
void add(int x, int y, int w, int v) {
g[++gl] = (node) {y, last[x], w, v};
last[x] = gl;
g[++gl] = (node) {x, last[y], 0, -v};
last[y] = gl;
}
int s, t;
int dis[N], from[N], pre[N];
bool vis[N];
queue<int> q;
bool spfa() {
q.push(s);
memset(dis, 127, sizeof(dis));
dis[s] = 0;
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (dis[v] > dis[u] + g[i].v && g[i].w) {
dis[v] = dis[u] + g[i].v;
from[v] = i; pre[v] = u;
if (!vis[v]) {
vis[v] = 1;
q.push(v);
}
}
}
vis[u] = 0;
}
return dis[0] != dis[t];
}
int McMf() {
int ans = 0;
while (spfa()) {
int di = inf;
for (int i = t; i != s; i = pre[i]) di = min(di, g[from[i]].w);
ans += di * dis[t];
for (int i = t; i != s; i = pre[i])
g[from[i]].w -= di, g[from[i]^1].w += di;
}
return ans;
}
int main() {
int n, m;
read(n), read(m);
for (int i = 1; i <= n; i++) read(a[i]);
s = n + 2, t = s + 1;
for (int i = 1; i <= n; i++)
add(i, i+1, inf - a[i], 0);
add(s, 1, inf, 0), add(n + 1, t, inf, 0);
for (int i = 1; i <= m; i++) {
int S, T, C;
read(S), read(T), read(C);
add(S, T+1, inf, C);
}
printf("%d
", McMf());
return 0;
}