题解
最小费用最大流
n和m是反着的
首先,
[ans = sum{cost[i][j]}*k
]
其中,(k)为它在当前技术人员那里,排倒数第(k)个修
我们可以对于每个技术人员进行拆点,
对于每个技术人员的各个点,表示倒数第几次修
然后每个人连向技术人员,显然花费是根据连的点来算的
然后就是二分图带权最小匹配了
我只会Dinic
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
int n, m;
const int N = 1010;
struct node {
int to, nxt, w, v;
}g[2000000];
int last[N], gl = 1;
void add(int x, int y, int w, int v) {
g[++gl] = (node) {y, last[x], w, v};
last[x] = gl;
g[++gl] = (node) {x, last[y], 0, -v};
last[y] = gl;
}
int dis[N], s, t, pre[N], from[N];
bool vis[N];
queue<int> q;
bool spfa() {
memset(dis, 127, sizeof(dis));
q.push(s);
dis[s] = 0;
while (!q.empty()) {
int u = q.front(); q.pop();
// printf("u = %d
", u);
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (g[i].w && dis[v] > dis[u]+g[i].v) {
dis[v] = dis[u]+g[i].v;
from[v] = i; pre[v] = u;
if (!vis[v]) {
vis[v] = 1;
q.push(v);
}
}
}
vis[u] = 0;
}
// printf("%d
", dis[t]);
return dis[t] != dis[0];
}
int Mcmf() {
int ans = 0;
while (spfa()) {
ans += dis[t];
for (int i = t; i != s; i = pre[i])
g[from[i]].w--, g[from[i]^1].w++;
}
return ans;
}
int a[70][10];
int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
read(m), read(n);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
read(a[i][j]);
for (int k = 1; k <= m; k++)//第k个技术人员
for (int i = 1; i <= n; i++)//第i个顾客
for (int j = 1; j <= n; j++)//倒数第j个修理
add(n*m+i, (k-1)*n+j, 1, j*a[i][k]);
s = n*m+n+1, t = s+1;
for (int i = n*m+1; i < s; i++)
add(s, i, 1, 0);
for (int i = 1; i <= n*m; i++)
add(i, t, 1, 0);
printf("%.2lf
", Mcmf()*1.0/n);
return 0;
}