• CV做直方图的比较说明图形越相似性


    #include "opencv/cv.hpp"
    #include "opencv2/objdetect/objdetect.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/imgproc/imgproc.hpp"
    
    #include <iostream>
    #include <stdio.h>
    
    using namespace std;
    using namespace cv;
    
    String cascadeName = "D:\OpenCV-2.4.2\data\haarcascades\haarcascade_frontalface_alt.xml";
    
    IplImage* cutImage(IplImage* src, CvRect rect) {
        cvSetImageROI(src, rect);
        IplImage* dst = cvCreateImage(cvSize(rect.width, rect.height),
                src->depth,
                src->nChannels);
    
        cvCopy(src,dst,0);
        cvResetImageROI(src);
        return dst;
    }
    
    IplImage* detect( Mat& img, CascadeClassifier& cascade, double scale)
    {
        int i = 0;
        double t = 0;
        vector<Rect> faces;
        Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
    
        cvtColor( img, gray, CV_BGR2GRAY );
        resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
        equalizeHist( smallImg, smallImg );
    
        t = (double)cvGetTickCount();
        cascade.detectMultiScale( smallImg, faces,
            1.3, 2, CV_HAAR_SCALE_IMAGE,
            Size(30, 30) );
        t = (double)cvGetTickCount() - t;
        printf( "detection time = %g ms
    ", t/((double)cvGetTickFrequency()*1000.) );
        for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
        {
            IplImage* temp = cutImage(&(IplImage(img)), cvRect(r->x, r->y, r->width, r->height));
            return temp;
        }
    
        return NULL;
    }
    //画直方图用
    int HistogramBins = 256;
    float HistogramRange1[2]={0,255};
    float *HistogramRange[1]={&HistogramRange1[0]};
    int CompareHist(IplImage* image1, IplImage* image2)
    {
        IplImage* srcImage;
        IplImage* targetImage;
        if (image1->nChannels != 1) {
            srcImage = cvCreateImage(cvSize(image1->width, image1->height), image1->depth, 1);
            cvCvtColor(image1, srcImage, CV_BGR2GRAY);
        } else {
            srcImage = image1;
        }
    
        if (image2->nChannels != 1) {
            targetImage = cvCreateImage(cvSize(image2->width, image2->height), srcImage->depth, 1);
            cvCvtColor(image2, targetImage, CV_BGR2GRAY);
        } else {
            targetImage = image2;
        }
    
        CvHistogram *Histogram1 = cvCreateHist(1, &HistogramBins, CV_HIST_ARRAY,HistogramRange);
        CvHistogram *Histogram2 = cvCreateHist(1, &HistogramBins, CV_HIST_ARRAY,HistogramRange);
    
        cvCalcHist(&srcImage, Histogram1);
        cvCalcHist(&targetImage, Histogram2);
    
        cvNormalizeHist(Histogram1, 1);
        cvNormalizeHist(Histogram2, 1);
    
        // CV_COMP_CHISQR,CV_COMP_BHATTACHARYYA这两种都可以用来做直方图的比较,值越小,说明图形越相似
        printf("CV_COMP_CHISQR : %.4f
    ", cvCompareHist(Histogram1, Histogram2, CV_COMP_CHISQR));
        printf("CV_COMP_BHATTACHARYYA : %.4f
    ", cvCompareHist(Histogram1, Histogram2, CV_COMP_BHATTACHARYYA));
    
    
        // CV_COMP_CORREL, CV_COMP_INTERSECT这两种直方图的比较,值越大,说明图形越相似
        printf("CV_COMP_CORREL : %.4f
    ", cvCompareHist(Histogram1, Histogram2, CV_COMP_CORREL));
        printf("CV_COMP_INTERSECT : %.4f
    ", cvCompareHist(Histogram1, Histogram2, CV_COMP_INTERSECT));
    
        cvReleaseHist(&Histogram1);
        cvReleaseHist(&Histogram2);
        if (image1->nChannels != 1) {
            cvReleaseImage(&srcImage);
        }
        if (image2->nChannels != 1) {
            cvReleaseImage(&targetImage);
        }
        return 0;
    }
    String srcImage = "d:\ldh1.jpg";
    String targetImage = "d:\ldh5.jpg";
    int main(int argc, char* argv[])
    {
        CascadeClassifier cascade;
        namedWindow("image1");
        namedWindow("image2");
        if( !cascade.load( cascadeName ) )
        {
            return -1;
        }
    
        Mat srcImg, targetImg;
        IplImage* faceImage1;
        IplImage* faceImage2;
        srcImg = imread(srcImage);
        targetImg = imread(targetImage);
        faceImage1 = detect(srcImg, cascade, 1);
        if (faceImage1 == NULL) {
            return -1;
        }
    //    cvSaveImage("d:\face.jpg", faceImage1, 0);
        faceImage2 = detect(targetImg, cascade, 1);
        if (faceImage2 == NULL) {
            return -1;
        }
    //    cvSaveImage("d:\face1.jpg", faceImage2, 0);
        imshow("image1", Mat(faceImage1));
        imshow("image2", Mat(faceImage2));
    
        CompareHist(faceImage1, faceImage2);
        cvWaitKey(0);
        cvReleaseImage(&faceImage1);
        cvReleaseImage(&faceImage2);
        return 0;
    }
    

      

  • 相关阅读:
    自定义泛型方法。(这里的三元表达式解决了会出现结尾多出个,的情况!!! 很简洁)
    自定义泛型类。
    泛型的好处。
    泛型的概述。
    正则表达式
    前端 JS 技巧记录(可直接使用)
    .NET5.0 MVC 生成发布,并部署到 IIS
    C# 实现 AES 加密算法
    SQL Server2008R2踩坑记录
    .NET5.0 依赖注入,关于 Autofac 使用
  • 原文地址:https://www.cnblogs.com/zzuyczhang/p/4466467.html
Copyright © 2020-2023  润新知