• ZYB loves Xor I(hud5269)


    ZYB loves Xor I

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 917    Accepted Submission(s): 424


    Problem Description
    Memphis loves xor very musch.Now he gets an array A.The length of A is n.Now he wants to know the sum of all (lowbit(Ai xor Aj)) (i,j[1,n])
    We define that lowbit(x)=2k,k is the smallest integer satisfied ((x and 2k)>0)
    Specially,lowbit(0)=0
    Because the ans may be too big.You just need to output ans mod 998244353
     
    Input
    Multiple test cases, the first line contains an integer T(no more than 10), indicating the number of cases. Each test case contains two lines
    The first line has an integer n
    The second line has n integers A1,A2....An
    n[1,5104]Ai[0,229]
     
    Output
    For each case, the output should occupies exactly one line. The output format is Case #x: ans, here x is the data number begins at 1.
     
    Sample Input
    2
    5
    4 0 2 7 0
    5
    2 6 5 4 0
     
    Sample Output
    Case #1: 36
    Case #2: 40
    思路:字典树;
    题意:
    ZYB喜欢研究Xor,现在他得到了一个长度为nn的数组A。于是他想知道:对于所有数对(i,j)(i in [1,n],j in [1,n])(i,j)(i[1,n],j[1,n]),lowbit(A_i xor A_j)lowbit(Ai​​xorAj​​)之和为多少.由于答案可能过大,你需要输出答案对998244353取模后的值
    定义lowbit(x)=2^k2k​​,其中k是最小的满足(xx andand 2^k)>02k​​)>0的数
    特别地:lowbit(0)=0

    将数转化为二进制,我们只需要枚举第k位满足亦或为1,那么分别统计这位上是0 x1,和1 x2,并且保证在x1,x2在[k-1,0]这些位上是相同的,那么我们可以建立字典树来统计字典树保证了当前节点前的所有位都相同。复杂度O(n*30);
      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<iostream>
      4 #include<string.h>
      5 #include<math.h>
      6 #include<stdlib.h>
      7 using namespace std;
      8 typedef long long LL;
      9 const LL mod = 998244353;
     10 struct node
     11 {
     12     node *p[2];
     13     LL val;
     14     node()
     15     {
     16         memset(p,0,sizeof(p));
     17         val = 0;
     18     }
     19 };
     20 int a[100005];
     21 short int id[100005][30];
     22 int si[100005];
     23 node *head;
     24 void fr(node *h);
     25 void in(node *h,int num);
     26 LL ask(node *h,LL x);
     27 int main(void)
     28 {
     29     int n,m,t,__cn = 0;;
     30     scanf("%d",&t);
     31     while(t--)
     32     {
     33         memset(id,0,sizeof(id));
     34         scanf("%d",&n);
     35         head = new node();
     36         for(int i = 1; i <= n; i++)
     37         {
     38             scanf("%d",&a[i]);
     39             int t = 0;
     40             int tt = 29;
     41             while(tt)
     42             {
     43                 id[i][t++] = a[i]%2;
     44                 a[i]/=2;
     45                 tt--;
     46             }
     47             si[i] = t;
     48             in(head,i);
     49         }
     50         LL sum = ask(head,1);
     51         fr(head);
     52         printf("Case #%d: ",++__cn);
     53         printf("%lld
    ",sum);
     54     }
     55     return 0;
     56 }
     57 void in(node *h,int  num)
     58 {
     59     int i,j;
     60     node *ak = h;
     61     for(i = 0; i < si[num]; i++)
     62     {
     63         int c = id[num][i];
     64         if(ak->p[c]==NULL)
     65         {
     66             ak->p[c] = new node();
     67         }
     68         ak->p[c]->val++;
     69         //printf("%d",c);
     70         ak = ak->p[c];
     71     }
     72     //printf("
    ");
     73 }
     74 void fr(node *h)
     75 {
     76     int i;
     77     for(i = 0; i < 2; i++)
     78     {
     79         if(h->p[i]!=NULL)
     80         {
     81             fr(h->p[i]);
     82         }
     83     }
     84     free(h);
     85 }
     86 LL ask(node *h,LL x)
     87 {
     88     node *ak = h;
     89     int i,j;
     90     LL sum = 0;
     91     if(h->p[0]!=NULL&&h->p[1]!=NULL)
     92     {
     93         LL ac = (1<<x)%mod;
     94         sum = sum + (ac*(h->p[0]->val*h->p[1]->val)%mod)%mod;
     95         sum%=mod;
     96     }
     97     for(i = 0; i < 2; i++)
     98     {
     99         if(h->p[i]!=NULL)
    100         {
    101             sum = (sum+ask(h->p[i],x+1))%mod;
    102         }
    103     }
    104     return sum;
    105 }
     
  • 相关阅读:
    linux的find命令详解
    在接口中的静态方法来获取model的实例对象
    php函数decbin
    cookie的默认有效目录
    html的base标签
    mysql多位小数字段用decimal类型
    vmware在桥接模式下配置centos7网络
    iis_rewrite3突然无法使用(因为它过期啦)
    LightGBM 调参方法(具体操作)
    沪深股票的复权计算(复权因子的应用)--代码实现
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/6186875.html
Copyright © 2020-2023  润新知