• 1301


    1301 - Monitoring Processes
    Time Limit: 3 second(s) Memory Limit: 32 MB

    We have planned to design a new operating system. Like other OS we will use the techniques of processes, schedulers, locks etc. The basic plan is to use the OS in hardwires that have low configurations. So, efficiency matters. That's why we want to minimize the cost as well as the power consumption. To be more specific, there are n processes, and each process starts its execution in timestamp si, and ends its execution in timestamp ti. For simplicity assume that the timestamps are represented as integers. Now when a process is being executed, we need a wrapper program to look after the process. The reason behind using wrapper programs is that, they will continuously check the processes and if any process tries to harm the system or wants to take hold of some restricted resources or even tries to invoke some forbidden methods, the wrapper will halt the process and generate appropriate error signals. But the problem is that a wrapper program cannot monitor more than one process in any timestamp and when it's been assigned to a process, it will have to wait until the process finishes. But after this, the same wrapper program can be used for monitoring another process. So, a wrapper program can be used for multiple processes but not more than one in any timestamp.

    So, we have the process schedules and we want to find the number of wrapper programs to monitor them according to the given restrictions. As you are the leading programmer of this project, you are asked to find the minimum number of wrapper programs to monitor all the processes.

    Input

    Input starts with an integer T (≤ 20), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 50000). Each of the next n lines contains two integers si ti (1 ≤ si ≤ ti ≤ 109).

    Output

    For each case, print the case number and the minimum number of wrapper programs to monitor all the processes.

    Sample Input

    Output for Sample Input

    2

    2

    1 3

    3 5

    4

    1 10

    10 20

    11 21

    3 5

    Case 1: 2

    Case 2: 2

    Note

    Dataset is huge, use faster I/O methods.


    PROBLEM SETTER: JANE ALAM JAN
    思路:离散化+线段树;
    转换为求重复次数最多的点,因为重复处必须要分开,那么只要找到那个重复最多次数的点将这些段分成重复最多次数段即可。
      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<iostream>
      4 #include<string.h>
      5 #include<stdlib.h>
      6 #include<queue>
      7 #include<set>
      8 using namespace std;
      9 typedef long long LL;
     10 typedef struct pp
     11 {
     12     int x;
     13     int y;
     14     int id;
     15 } ss;int maxx;
     16 ss ans[50005];
     17 int ak[200000];
     18 int tree[200000*4];
     19 void in(int n,int m,int l,int r,int k)
     20 {
     21     if(l>m||r<n)
     22     {
     23         return ;
     24     }
     25     else if(l<=n&&r>=m)
     26     {
     27         tree[k]+=1;
     28         return ;
     29     }
     30     else
     31     {
     32         in(n,(n+m)/2,l,r,2*k+1);
     33         in((n+m)/2+1,m,l,r,2*k+2);
     34     }
     35 }
     36 void fang(int n,int m,int k)
     37 {
     38     if(n==m)
     39     {   if(tree[k]>maxx)
     40          maxx=tree[k];
     41         return ;
     42     }
     43     else
     44     {
     45         tree[2*k+1]+=tree[k];
     46         tree[2*k+2]+=tree[k];
     47         fang(n,(n+m)/2,2*k+1);
     48         fang((n+m)/2+1,m,2*k+2);
     49     }
     50 }
     51 int main(void)
     52 {
     53     int i,j,k;
     54     scanf("%d",&k);
     55     int s;
     56     int n,m;
     57     for(s=1; s<=k; s++)
     58     {   maxx=0;
     59         scanf("%d",&n);
     60         int vv=0;
     61         for(i=0; i<n; i++)
     62         {
     63             scanf("%d %d",&ans[i].x,&ans[i].y);
     64             ak[vv++]=ans[i].x;
     65             ak[vv++]=ans[i].y;
     66         }
     67         sort(ak,ak+vv);
     68         for(i=0; i<n; i++)
     69         {
     70             int l=0;
     71             int r=vv-1;
     72             int id=0;
     73             while(l<=r)
     74             {
     75                 int mid=(l+r)/2;
     76                 if(ak[mid]<=ans[i].x)
     77                 {
     78                     id=mid;
     79                     l=mid+1;
     80                 }
     81                 else r=mid-1;
     82             }
     83             ans[i].x=id;
     84             l=0;
     85             r=vv-1;
     86             while(l<=r)
     87             {
     88                 int mid=(l+r)/2;
     89                 if(ak[mid]<=ans[i].y)
     90                 {
     91                     id=mid;
     92                     l=mid+1;
     93                 }
     94                 else r=mid-1;
     95             }
     96             ans[i].y=id;
     97         }
     98         memset(tree,0,sizeof(tree));
     99         for(i=0; i<n; i++)
    100         {
    101             in(0,200000,ans[i].x,ans[i].y,0);
    102            
    103         }
    104         fang(0,200000,0);
    105         printf("Case %d: %d
    ",s,maxx);
    106     }
    107     return 0;
    108 }
    油!油!you@
  • 相关阅读:
    黑产及社会工程学-学习历程
    ACE_Get_Opt函数笔记
    PlatformIO+Jlink进行调试
    Mac下搭建基于PlatformIO的嵌入式开发环境(STM32开发)
    选择排序
    插入排序
    JPEG原理详解 (转载)
    双链表基本操作
    单链表基本操作
    顺序表基本操作
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5617937.html
Copyright © 2020-2023  润新知