• poj 2566Bound Found(前缀和,尺取法)


    http://poj.org/problem?id=2566

    Bound Found
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 2237   Accepted: 692   Special Judge

    Description

    Signals of most probably extra-terrestrial origin have been received and digitalized by The Aeronautic and Space Administration (that must be going through a defiant phase: "But I want to use feet, not meters!"). Each signal seems to come in two parts: a sequence of n integer values and a non-negative integer t. We'll not go into details, but researchers found out that a signal encodes two integer values. These can be found as the lower and upper bound of a subrange of the sequence whose absolute value of its sum is closest to t. 

    You are given the sequence of n integers and the non-negative target t. You are to find a non-empty range of the sequence (i.e. a continuous subsequence) and output its lower index l and its upper index u. The absolute value of the sum of the values of the sequence from the l-th to the u-th element (inclusive) must be at least as close to t as the absolute value of the sum of any other non-empty range.

    Input

    The input file contains several test cases. Each test case starts with two numbers n and k. Input is terminated by n=k=0. Otherwise, 1<=n<=100000 and there follow n integers with absolute values <=10000 which constitute the sequence. Then follow k queries for this sequence. Each query is a target t with 0<=t<=1000000000.

    Output

    For each query output 3 numbers on a line: some closest absolute sum and the lower and upper indices of some range where this absolute sum is achieved. Possible indices start with 1 and go up to n.

    Sample Input

    5 1
    -10 -5 0 5 10
    3
    10 2
    -9 8 -7 6 -5 4 -3 2 -1 0
    5 11
    15 2
    -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    15 100
    0 0
    

    Sample Output

    5 4 4
    5 2 8
    9 1 1
    15 1 15
    15 1 15
    

    Source

    题意:找连续的串,求和绝对值与所给数字最接近的串。

    思路:先求下标为1的到其他下的串的值,也就是前缀和;这样可以在O(1)的时间内求出各个串的和.比如S1(1,1),S3(1,3);

    那么S3-S1就是S(2,3);

    然后对上面所求的前缀和按从小到大排序。(因为取的是绝对值所以abs(Sn-Sk)==abs(Sk-Sn));

    这样就可以用尺取法去做了。复杂度为O(n);

    还可以用二分取找值,复杂度为O(n*log(n));

      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<iostream>
      4 #include<string.h>
      5 #include<math.h>
      6 #include<vector>
      7 #include<map>
      8 #include<stack>
      9 int cmp(const void*p,const void*q);
     10 typedef struct pp
     11 {
     12     int cost ;
     13     int x;
     14     int y;
     15 } ss;
     16 const int N=1<<30;
     17 const int M=1e6;
     18 int a[M];
     19 int b[M];
     20 ss dp[M];
     21 using namespace std;
     22 int main(void)
     23 {
     24     int n,i,j,k,p,q;
     25     while(scanf("%d %d",&p,&q),p!=0&&q!=0)
     26     {
     27         for(i=1; i<=p; i++)
     28         {
     29             scanf("%d",&a[i]);
     30         }
     31         dp[1].cost=a[1];
     32         dp[1].x=1;
     33         dp[1].y=1;
     34         for(i=2; i<=p; i++)
     35         {
     36             dp[i].cost=a[i]+dp[i-1].cost;
     37             dp[i].x=1;
     38             dp[i].y=i;
     39         }
     40         qsort(dp+1,p,sizeof(ss),cmp);
     41         while(q--)
     42         {
     43             scanf("%d",&k);
     44             int ll=1;
     45             int rr=1;
     46             int minn=N;
     47             int lb;
     48             int rb;
     49             int co;
     50             for(i=1; i<=p; i++)
     51             {
     52                 if(abs(abs(dp[i].cost)-k)<minn)
     53                 {
     54                     minn=abs(abs(dp[i].cost)-k);
     55                     lb=1;
     56                     rb=dp[i].y;
     57                     co=abs(abs(dp[i].cost));
     58                 }
     59             }
     60             while(rr<p)
     61             {
     62                 while(rr<=p&&abs(dp[rr].cost-dp[ll].cost)<=k)
     63                 {
     64                     rr++;
     65                 }
     66                 if(rr==p+1)
     67                 {
     68                     rr--;
     69                 }
     70                 if(abs(dp[rr].cost-dp[ll].cost)>k&&rr-ll>1)
     71                 {
     72                     int nx=abs(abs(dp[rr].cost-dp[ll].cost)-k);
     73                     int ny=abs(abs(dp[rr-1].cost-dp[ll].cost)-k);
     74                     int kl=rr;
     75                     if(ny<nx)
     76                     {
     77                         kl--;
     78                     }
     79                     if(abs(abs(dp[kl].cost-dp[ll].cost)-k)<minn)
     80                     {
     81                         lb=min(dp[kl].y,dp[ll].y)+1;
     82                         rb=max(dp[kl].y,dp[ll].y);
     83                         minn=abs(abs(dp[kl].cost-dp[ll].cost)-k);
     84                         co=abs(dp[kl].cost-dp[ll].cost);
     85                     }
     86                 }
     87                 else if(abs(dp[rr].cost-dp[ll].cost)>k&&rr-ll==1)
     88                 {
     89                     if(abs(abs(dp[rr].cost-dp[ll].cost)-k)<minn)
     90                     {
     91                         lb=min(dp[rr].y,dp[ll].y)+1;
     92                         rb=max(dp[rr].y,dp[ll].y);
     93                         minn=abs(abs(dp[rr].cost-dp[ll].cost)-k);
     94                         co=abs(dp[rr].cost-dp[ll].cost);
     95                     }
     96 
     97                 }
     98                 else if(abs(dp[rr].cost-dp[ll].cost)<=k)
     99                 {
    100                     if(abs(abs(dp[rr].cost-dp[ll].cost)-k)<minn)
    101                     {
    102                         lb=min(dp[rr].y,dp[ll].y)+1;
    103                         rb=max(dp[rr].y,dp[ll].y);
    104                         minn=abs(abs(dp[rr].cost-dp[ll].cost)-k);
    105                         co=abs(dp[rr].cost-dp[ll].cost);
    106                     }
    107 
    108                 }
    109                 ll++;
    110             }
    111             printf("%d %d %d
    ",co,lb,rb);
    112         }
    113     }
    114 }
    115 int cmp(const void*p,const void*q)
    116 {
    117     ss*ww=(ss*)p;
    118     ss*w=(ss*)q;
    119     if(ww->cost==w->cost)
    120     {
    121         return  ww->y-w->y;
    122     }
    123     return ww->cost-w->cost;
    124 }

     二分

      1 #include<stdio.h>
      2 #include<algorithm>
      3 #include<stdlib.h>
      4 #include<string.h>
      5 #include<algorithm>
      6 #include<iostream>
      7 #include<map>
      8 const int N=1000000;
      9 int cmp(const void*p,const void*q);
     10 int er(int n,int m,int t,int c);
     11 typedef struct pp
     12 {
     13     int cost;
     14     int le;
     15     int ri;
     16 } ss;//结构体记录前缀数组和和其左右端点
     17 ss a[N];
     18 int b[N],c[N];
     19 int  vv;
     20 using namespace std;
     21 int main(void)
     22 {
     23     int n,i,j,k,p,q;
     24     while(scanf("%d %d",&p,&q),p!=0&&q!=0)
     25     {
     26         for(i=1; i<=p; i++)
     27             scanf("%d",&b[i]);
     28         int cnt=1;
     29         a[cnt].cost=b[1];
     30         a[cnt].le=1;
     31         a[cnt].ri=1;
     32         cnt++;
     33         for(i=2; i<=p; i++)
     34         {
     35             a[cnt].cost=a[cnt-1].cost+b[i];
     36             a[cnt].le=1;
     37             a[cnt].ri=i;
     38             cnt++;
     39         }
     40         qsort(a+1,cnt-1,sizeof(ss),cmp);
     41         /*for(i=1;i<=p;i++)
     42         {
     43             printf("%d
    ",a[i].cost);
     44             printf("000
    ");
     45             printf("%d
    ",a[i].ri);
     46         }*/
     47         for(i=1; i<=q; i++)
     48         {
     49             cin>>b[i];
     50         }
     51         for(int pq=1; pq<=q; pq++)
     52         {
     53             k=b[pq];
     54             int minn=1<<30;
     55             int ll=0;
     56             int rr=0;
     57             int uk=0;
     58             for(j=1; j<=p; j++)
     59             {
     60                 if(abs(abs(a[j].cost)-k)<minn)
     61                 {
     62                     minn=abs(abs(a[j].cost)-k);
     63                     uk=abs(a[j].cost);
     64                     ll=1;
     65                     rr=a[j].ri;
     66                 }
     67             }//首先把所有前缀过一遍更新最小,因为二分时找不到
     68             for(j=1; j<p; j++)
     69             {
     70                 int kk=er(j+1,p,k,j);
     71                 vv=j;
     72                 if(kk==p)
     73                 {if(kk-vv>1)//这里需要判断下,kk-vv>1才能用下面的比较。
     74                     {int uu=abs(abs(a[kk-1].cost-a[j].cost)-k);
     75                     int w=abs(abs(a[kk].cost-a[j].cost)-k);
     76                     if(uu<w)
     77                     {
     78                         kk--;
     79                     }
     80                     int ww=abs(abs(a[kk].cost-a[j].cost)-k);
     81                     if(ww<minn)
     82                     {
     83                         minn=ww;
     84                         ll=min(a[kk].ri,a[j].ri)+1;
     85                         rr=max(a[kk].ri,a[j].ri);
     86                         uk=abs(a[kk].cost-a[j].cost);
     87                     }}
     88                     else if(kk-vv==1)//kk-vv正好为1时表明kk就为所找,不能再比较kk-1,因为kk-1为空值
     89                     { int ww=abs(abs(a[kk].cost-a[j].cost)-k);
     90                     if(ww<minn)
     91                     {
     92                         minn=ww;
     93                         ll=min(a[kk].ri,a[j].ri)+1;
     94                         rr=max(a[kk].ri,a[j].ri);
     95                         uk=abs(a[kk].cost-a[j].cost);
     96                     }
     97                     }
     98                 }
     99                 else
    100                 {
    101 
    102                     int uu=abs(abs(a[kk-1].cost-a[j].cost)-k);
    103                     int w=abs(abs(a[kk].cost-a[j].cost)-k);
    104                     if(uu<w)
    105                     {
    106                         kk--;
    107                     }
    108                     if(kk==j)
    109                     {
    110                         kk++;
    111                     }
    112                     int ww=abs(abs(a[kk].cost-a[j].cost)-k);
    113                     if(ww<minn)
    114                     {
    115                         minn=ww;
    116                         ll=min(a[kk].ri,a[j].ri)+1;
    117                         rr=max(a[kk].ri,a[j].ri);
    118                         uk=abs(a[kk].cost-a[j].cost);
    119 
    120                     }
    121                 }
    122 
    123             }
    124             printf("%d %d %d
    ",uk,ll,rr);
    125         }
    126     }
    127 }
    128 int cmp(const void*p,const void*q)//二分查找
    129 {
    130     ss*w=(ss*)p;
    131     ss*ww=(ss*)q;
    132     return w->cost-ww->cost;
    133 }
    134 int er(int n,int m,int k,int c)
    135 {
    136     int y=(n+m)/2;
    137     if(abs(a[y].cost-a[c].cost)==k)
    138     {
    139         return y;
    140     }
    141     else if(n==m)
    142     {
    143         return m;
    144     }
    145     else if(abs(a[y].cost-a[c].cost)>k&&abs(a[y-1].cost-a[c].cost)<k)
    146     {
    147         return y;
    148     }
    149     else if(abs(a[y].cost-a[c].cost)<k&&abs(a[y-1].cost-a[c].cost)<k)
    150     {
    151         return er(y+1,m,k,c);
    152     }
    153     else return er(n,y-1,k,c);
    154 }
    油!油!you@
  • 相关阅读:
    Java求区间连续最大和的三种解法(含输出起始位置)
    Java批量操作和遍历文件程序收集
    FastJson序列化部分字段的方法
    Spring源码之一步步拓展实现spring-mybatis
    Spring源码之BeanFactoryPostProcessor的执行顺序
    Classpath entry points to a non-existent location:D:libjavajdk8jrelibextaccess-bridge-32.jar
    编译Spring源码省心小贴士
    (转)HttpServletResquest对象
    (转)ServletConfig与ServletContext
    Oracle复习(复习精简版v1.0)
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5035249.html
Copyright © 2020-2023  润新知