• [PKUWC2018]Slay the Spire


     [PKUWC2018]Slay the Spire

    可以发现期望只是一个幌子。我们的目的是:对于所有随机的选择方法(一共 (2nm)种),这些选择方法都最优地打出 k 张牌,他们能造成的伤害的和是多少。
    
    显然的是,能打强化就打强化(不过你好歹也要攻击一张)。记 m 张卡中分给强化卡的数量为 i。我们枚举 i,根据 i 与 k 的大小关系来决定怎样打牌。
    
    那么 i<k 时,就打出 i 张强化卡,k−i 张攻击卡。(这意味着你能打的强化卡总共才 i 张,当然是能打强化卡就打强化卡)
    
    i≥k−1 时,就打出 k−1 张强化卡,1 张攻击卡。(这意味着你能打的强化卡还挺多,留一张攻击就行了)。
    
    记 F(i,j) 为分给强化卡的数量为 i,打出 j 张,所有方案翻的倍率的和。G(i,j) 为分给攻击卡的数量为 i,打出 j 张,所有方案的(不加强化的)攻击力和。
    
    两者分别对应 F(i,i)×G(m−i,k−i) 和 F(i,k−1)×G(m−i,1)。为什么可以是这种“和乘和”的形式呢?因为乘法分配律。
    

      

    现在的问题变成快速计算 F 和 G。
    
    关于 F,可以 sort 以后定义一个 f,f(i,j) 表示选(注意是选,不是分)了 i 张强化牌且最这 i 张牌中位置靠前的那张牌是所有强化牌中的第 j 个,这样的所有方案翻的倍率的和。转移看代码。G 和 g 也类似。
    

      

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    typedef long long ll;
    const int mod=998244353;
    int T, n, m, k, a[1505], b[1505], c[3005][3005], f[1505][1505];
    int g[1505][1505], sum[1505];
    int F(int x, int y){
        if(x<y) return 0;
        if(!y)  return c[n][x];
        int re=0;
        for(int j=x-y+1; j<=n-y+1; j++)
            re = (re + (ll)f[y][j]*c[j-1][x-y]%mod) % mod;
        //感性理解一下……大概就是把x-y张不打出的牌放到j前头,这里我讲不太清QAQ
        return re;
    }
    int G(int x, int y){
        if(x<y) return 0;
        int re=0;
        for(int j=x-y+1; j<=n-y+1; j++)
            re = (re + (ll)g[y][j]*c[j-1][x-y]%mod) % mod;
        return re;
    }
    int main(){
        cin>>T;
        for(int i=0; i<=3000; i++){
            c[i][0] = 1;
            for(int j=1; j<=i; j++)
                c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod;
        }
        while(T--){
            memset(f, 0, sizeof(f));
            memset(g, 0, sizeof(g));
            scanf("%d %d %d", &n, &m, &k);
            for(int i=1; i<=n; i++) scanf("%d", &a[i]);
            for(int i=1; i<=n; i++) scanf("%d", &b[i]);
            sort(a+1, a+1+n);//跟牌的顺序无关,可以sort
            sort(b+1, b+1+n);
            for(int i=1; i<=n; i++){
                f[1][i] = a[i];//初始化f[][],显然只选1张的倍率之和是a[i]
                sum[i] = (sum[i-1] + a[i]) % mod;//前缀和,方便转移
            }
            for(int i=2; i<=n; i++){
                for(int j=1; j<=n-i+1; j++)
                    f[i][j] = (ll)a[j] * (sum[n]-sum[j]+mod) % mod;
                //打了i张牌,最前头的是第j张,那它就是f[i-1][j+1..n]的和再乘上第j号元素。这个转移的思想是枚举在打了i-1张牌的时候最前头的是哪一张
                for(int j=1; j<=n; j++)
                    sum[j] = (sum[j-1] + f[i][j]) % mod;
            }
            for(int i=1; i<=n; i++){
                g[1][i] = b[i];
                sum[i] = (sum[i-1] + b[i]) % mod;
            }
            for(int i=2; i<=n; i++){
                for(int j=1; j<=n-i+1; j++)
                    g[i][j] = ((ll)b[j]*c[n-j][i-1]%mod+(sum[n]-sum[j]+mod)%mod) % mod;
                //打了i张牌,最前头的是第j张。注意g代表的是(不加强化的)攻击力和。在这种情况下,打了i-1张牌的总情况是c[n-j][i-1]种(j+1..n中选i-1个的方案数),这是第一项;第二项就是继承自g[i-1][j+1..n]
                for(int j=1; j<=n; j++)
                    sum[j] = (sum[j-1] + g[i][j]) % mod;
            }
            int ans=0;
            for(int i=0; i<m; i++)
                if(i<k) ans = (ans + (ll)F(i,i)*G(m-i,k-i)%mod) % mod;
                else    ans = (ans + (ll)F(i,k-1)*G(m-i,1)%mod) % mod;
            printf("%d
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    C/C++中0xcccccccc...
    函数指针定义
    Visual C++的DLL
    RGB
    链接指示:extern "C"
    for_each用法
    漫画 | 夜深了,程序员的电脑却没关,发生了这样的故事…
    漫画 | 小公司卧薪尝胆三年,意外拿到美团offer
    Java 可变参数
    使用程序往Neo4j导入CSV报错
  • 原文地址:https://www.cnblogs.com/zzrblogs/p/12017608.html
Copyright © 2020-2023  润新知