• 证明最优化loss function+penalty等价于最优化带限制条件的loss function


    Equivalence of constrained and unconstrained form for lasso

    Problem 1 The unconstrained form of lasso

    [operatorname{min}_{eta}|y-X eta|_{2}^{2}+lambda|eta|_{1} ag{1} ]

    Suppose we solve Problem 1 for a given (lambda) and obtain its solution (eta_{ ext{problem1}}^*(lambda)).

    Problem 2 The constrained form of lasso

    [operatorname{min}_{eta}|Y-X eta|_{2}^{2} ]

    [s.t. {|eta|_{1} leq s} ]

    We can rewrite the constrained form into unconstrained form using Lagrangian mutiplier method.

    The unconstrained form for the problem is given by:

    [operatorname{min}_{eta,v}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) ag{2} ]

    Since the objective and the constraints are convex, so we have the pair ((eta^*,v^*)) is primal-dual optimal if and only if it is a saddle-point of the Lagrangian.

    [operatorname{min}_{eta}operatorname{max}_{v}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) =operatorname{max}_{v}operatorname{min}_{eta}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) ]

    First we solve the

    [operatorname{min}_{eta}|Y-X eta|_{2}^{2}+vleft(|eta|_{1}-s ight) ]

    The form is the same with eq(1), so we have the same solution with Problem 1, i.e. (eta_{ ext{problem2}}^*=eta_{ ext{problem1}}^*(v))

    Then we solve

    [operatorname{max}_{v}|Y-X eta^*(v)|_{2}^{2}+vleft(|eta^*(v)|_{1}-s ight) ]

    The solution is (v^*).

    Finally, we have that (eta^*_{ ext{problem2}}=eta_{ ext{problem1}}^*(v^*))

    Therefore,if we let (lambda) in Problem 1 be (v^*), the solution in Problem 1 is (eta_{ ext{problem1}}^*=eta_{ ext{problem1}}^*(lambda)=eta_{ ext{problem1}}^*(v^*)), this is the same with solution in Problem 2.

    So the two forms are equivalent.

    Equivalence of constrained and unconstrained form for Ridge Regression

    Problem 1 The unconstrained form of ridge regression

    [operatorname{min}_{eta}|y-X eta|_{2}^{2}+lambda|eta|_{2}^{2} ag{3} ]

    Suppose we solve Problem 3 using F.O.C for a given (lambda) and obtain its solution (eta^*(lambda)).

    Problem 2 The constrained form of ridge regression

    [operatorname{min}_{eta}|Y-X eta|_{2}^{2} ]

    [s.t. {|eta|_{2}^2 leq s} ]

    We can rewrite the constrained form into unconstrained form using Lagrangian mutiplier method.

    The unconstrained form for the problem is given by:

    [operatorname{min}_{eta,v}|Y-X eta|_{2}^{2}+vleft(|eta|_{2}^{2}-s ight) ag{4} ]

    The first KKT condition (stationarity) says that the gradient with respect to (eta) of the lagrangian equals to 0. Since s is independent on (eta), so solving for the derivative of eq (3) is thus equivalent to solving for the derivate of eq (4) when (lambda=v) .

    The second KKT condition (complementarity) says that

    [vleft(|eta|_{2}^{2}-s ight)=0 ]

    Let (s=|eta^*(lambda)|^2), then we can find that (v^*=lambda) and (eta^*=eta^*(lambda)) satisfy the KKT conditions for Problem 2, so they are the solution of Problem 2, which is the same as the solution in Problem 1.

    So the two forms are equivalent.

    本文为跑得飞快的凤凰花原创,如需转载,请标明出处~
  • 相关阅读:
    CSS 常见的8种选择器 和 文本溢出问题
    CSS 的三种样式 内联 内部 外部
    小记
    冠词的用法
    Levenberg–Marquardt algorithm
    classical 和 classic 的区别
    论文时态
    简明 Python 教程
    pytorch中的动态学习率规划器
    如何计算数据集均值和方差
  • 原文地址:https://www.cnblogs.com/zzqingwenn/p/12668264.html
Copyright © 2020-2023  润新知