• zoj-3329-期望/dp/方程优化


    One Person Game

    Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

    There is a very simple and interesting one-person game. You have 3 dice, namely Die1Die2 and Die3Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1K2K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

    1. Set the counter to 0 at first.
    2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
    3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

    Calculate the expectation of the number of times that you cast dice before the end of the game.

    Input

    There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers nK1K2K3abc (0 <= n <= 500, 1 < K1K2K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

    Output

    For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

    Sample Input

    2
    0 2 2 2 1 1 1
    0 6 6 6 1 1 1
    

    Sample Output

    1.142857142857143
    1.004651162790698
    

        f[i]表示已经得到i分之后距离目标的期望次数,pk表示得分为k的概率,则有f[i]=SUM{ p[k]*f[i+k] } + p0*f[0] + 1 ,因为下一次操作可能清零或者组合成其他点数,要分开讨论。这个式子无法直接递推,我们需要简化一下。

    可以看出f[i]均和f[0]有关,不妨令f[i]=A[i]*f[0]+B[i] ,带入上式得到  f[i]=(sum{ p[k]*A[i+k] }  + p0)*f[0]+(SUM{ pk*B[i+k] } +1 ) ,可以看出A[i]=SUM{ pk*A[i+k] }+p0 , B[i]=SUM{ pk*B[i+k] }+1 ,A[i]和B[i]可以递推得到,所以答案就是A[0]/(1-B[0]);

        

     1 #include<iostream>
     2 #include<cstring>
     3 #include<queue>
     4 #include<cstdio>
     5 #include<stack>
     6 #include<set>
     7 #include<map>
     8 #include<cmath>
     9 #include<ctime>
    10 #include<time.h> 
    11 #include<algorithm>
    12 using namespace std;
    13 #define mp make_pair
    14 #define pb push_back
    15 #define debug puts("debug")
    16 #define LL long long 
    17 #define pii pair<int,int>
    18 #define eps 1e-12
    19 
    20 double p[50];
    21 double A[1100],B[1100]; 
    22 int main()
    23 {
    24     int n,m,i,j,k,t;
    25     int k1,k2,k3,a,b,c;
    26     scanf("%d",&t);
    27     while(t--){
    28         scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
    29         double p0=(double)1.0/k1/k2/k3;
    30         memset(A,0,sizeof(A));
    31         memset(B,0,sizeof(B));
    32         memset(p,0,sizeof(p));
    33         for(i=1;i<=k1;++i){
    34             for(j=1;j<=k2;++j){
    35                 for(k=1;k<=k3;++k){
    36                     p[i+j+k]+=p0;
    37                 }
    38             }
    39         }
    40         p[a+b+c]-=p0;
    41         for(i=n;i>=0;--i){
    42             A[i]=p0;
    43             B[i]=1;
    44             for(j=0;j<50;++j)
    45              A[i]+=p[j]*A[i+j],
    46              B[i]+=p[j]*B[i+j];
    47         }
    48         printf("%.15f
    ",B[0]/(1-A[0]));
    49     }
    50     return 0; 
    51 }
  • 相关阅读:
    函数响应式编程及ReactiveObjC学习笔记 (-)
    Flask的第一个应用
    Django错误 OperationalError: no such column: xxx
    Python高级数据类型模块collections
    wsgiref 源码解析
    WSGI文档(中文版)
    Python:树的遍历
    Django+haystack实现全文搜索出现错误 ImportError: cannot import name signals
    Django+Celery+Redis实现异步任务(发送邮件)
    Python面向对象—类的继承
  • 原文地址:https://www.cnblogs.com/zzqc/p/8983914.html
Copyright © 2020-2023  润新知