***这里的executor在worker上分配策略以spreadOut 为例***
1.3版本关键点:
for (app <- waitingApps if app.coresLeft > 0) { //对还未被完全分配资源的apps处理 val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE) .filter(canUse(app, _)).sortBy(_.coresFree).reverse //根据core Free对可用Worker进行降序排序。 val numUsable = usableWorkers.length //可用worker的个数 eg:可用5个worker val assigned = new Array[Int](numUsable) //候选Worker,每个Worker一个下标,是一个数组,初始化默认都是0 var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)//还要分配的cores = 集群中可用Worker的可用cores总和(10), 当前未分配core(5)中找最小的 var pos = 0 while (toAssign > 0) { if (usableWorkers(pos).coresFree - assigned(pos) > 0) { //以round robin方式在所有可用Worker里判断当前worker空闲cpu是否大于当前数组已经分配core值 toAssign -= 1 assigned(pos) += 1 //当前下标pos的Worker分配1个core +1 } pos = (pos + 1) % numUsable //round-robin轮询寻找有资源的Worker } // Now that we've decided how many cores to give on each node, let's actually give them for (pos <- 0 until numUsable) { if (assigned(pos) > 0) { //如果assigned数组中的值>0,将启动一个executor在,指定下标的机器上。 val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) //更新app里的Executor信息 launchExecutor(usableWorkers(pos), exec) //通知可用Worker去启动Executor app.state = ApplicationState.RUNNING } } }
以上红色代码清晰的展示了在平均分配的场景下,每次会给worker分配1个core,所以说在spark-submit中如果设置了 --executor-cores属性未必起作用;
但在2.x版本的spark中却做了这方面的矫正,它确实会去读取--executor-cores属性中的值,如果该值未设置则依然按照1.3.x的方式执行,代码如下:
private def scheduleExecutorsOnWorkers( app: ApplicationInfo, usableWorkers: Array[WorkerInfo], spreadOutApps: Boolean): Array[Int] = { val coresPerExecutor = app.desc.coresPerExecutor val minCoresPerExecutor = coresPerExecutor.getOrElse(1) val oneExecutorPerWorker = coresPerExecutor.isEmpty val memoryPerExecutor = app.desc.memoryPerExecutorMB val numUsable = usableWorkers.length val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum) /** Return whether the specified worker can launch an executor for this app. */ def canLaunchExecutor(pos: Int): Boolean = { val keepScheduling = coresToAssign >= minCoresPerExecutor val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor // If we allow multiple executors per worker, then we can always launch new executors. // Otherwise, if there is already an executor on this worker, just give it more cores. val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0 if (launchingNewExecutor) { val assignedMemory = assignedExecutors(pos) * memoryPerExecutor val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit keepScheduling && enoughCores && enoughMemory && underLimit } else { // We're adding cores to an existing executor, so no need // to check memory and executor limits keepScheduling && enoughCores } } // Keep launching executors until no more workers can accommodate any // more executors, or if we have reached this application's limits var freeWorkers = (0 until numUsable).filter(canLaunchExecutor) while (freeWorkers.nonEmpty) { freeWorkers.foreach { pos => var keepScheduling = true while (keepScheduling && canLaunchExecutor(pos)) { coresToAssign -= minCoresPerExecutor assignedCores(pos) += minCoresPerExecutor // If we are launching one executor per worker, then every iteration assigns 1 core // to the executor. Otherwise, every iteration assigns cores to a new executor. if (oneExecutorPerWorker) { assignedExecutors(pos) = 1 } else { assignedExecutors(pos) += 1 } // Spreading out an application means spreading out its executors across as // many workers as possible. If we are not spreading out, then we should keep // scheduling executors on this worker until we use all of its resources. // Otherwise, just move on to the next worker. if (spreadOutApps) { keepScheduling = false } } } freeWorkers = freeWorkers.filter(canLaunchExecutor) } assignedCores }