题目大意:给定一个无向图,问共存在多少个割点。(割点:去掉此点后此图会断开连接)割点有两种存在:一种是第一次搜索的根节点,若其子节点数超过两个,则此点去掉后图会
断开连接,因此此点为割点;或者此点为搜索树的子节点,若其子节点的最早达到时间状态比其自身要晚,则说明此点不得不经过,并以此来更新其子节点,故其也是割点。
详见代码。
#include <stdio.h> #include <algorithm> #include <vector> #include <string.h> using namespace std; #define N 10100 vector<vector<int> >G; int n, dfn[N], low[N], Time, father[N], vis[N]; void Init() { G.clear(); G.resize(n+1); memset(dfn, 0, sizeof(dfn)); memset(low, 0, sizeof(low)); memset(father, 0, sizeof(father)); memset(vis, 0, sizeof(vis)); Time = 0; } void Trajin(int u, int fa) { father[u] = fa; dfn[u] = low[u] = ++Time; int i, len = G[u].size(), v; for(i=0; i<len; i++) { v = G[u][i]; if(!dfn[v]) { Trajin(v, u); low[u] = min(low[u], low[v]); } else if(fa!=v) low[u] = min(low[u], dfn[v]); } } int main() { while(scanf("%d", &n), n) { Init(); int a, b; char x; while(scanf("%d", &a), a) { while(scanf("%d%c", &b, &x)) { G[a].push_back(b); G[b].push_back(a); if(x==' ')break; } } Trajin(1, 0); int ans = 0, RootSon = 0; for(int i=2; i<=n; i++) { if(father[i]==1)RootSon++; else if(dfn[father[i]]<=low[i]) vis[father[i]] = 1; } if(RootSon>1)ans++; for(int i=2; i<=n; i++) if(vis[i])ans++; printf("%d ", ans); } return 0; }