• 最大流最小割定理


    对于一个割(S,T),我们定义净流f(S,T)表示穿过割(S,T)的流量之和,即:

    f(S,T) = Σf(u,v) | u∈S,v∈T

    举个例子(该例子选自算法导论):

    净流f = f(2,4)+f(3,4)+f(3,5) = 12+(-4)+11 = 19

    同时我们定义割的容量C(S,T)为所有从S到T的边容量之和,即:

    C(S,T) = Σc(u,v) | u∈S,v∈T

    同样在上面的例子中,其割的容量为:

    c(2,4)+c(3,5)=12+14=26

    小Ho:也就是说在计算割(S,T)的净流f(S,T)时可能存在反向的流使得f(u,v)<0,而容量C(S,T)一定是非负数。

    小Hi:你这么说也没错。实际上对于任意一个割的净流f(S,T)总是和网络流的流量f相等。比如上面例子中我们改变一下割的方式:

    可以计算出对于这两种情况净流f(S,T)仍然等于19。

    一个直观的解释是:根据网络流的定义,只有源点s会产生流量,汇点t会接收流量。因此任意非s和t的点u,其净流量一定为0,也即是Σ(f(u,v))=0。而源点s的流量最终都会通过割(S,T)的边到达汇点t,所以网络流的流f等于割的静流f(S,T)。

    严格的证明如下:

    f(S,T) = f(S,V) - f(S,S)
    从S到T的流等于从S到所有节点的流减去从S到S内部节点的流
    f(S,T) = f(S,V)
    由于S内部的节点之间存在的流一定有对应的反向流,因此f(S,S)=0
    f(S,T) = f(s,V) + f(S-s,V)
    再将S集合分成源点s和其他属于S的节点
    f(S,T) = f(s,V)
    由于除了源点s以外其他节点不会产生流,因此f(S-s,V)=0
    f(S,T) = f(s,V) = f

    所以f(S,T)等于从源点s出来的流,也就是网络的流f。

    小Ho:简单理解的话,也就是说任意一个割的净流f(S,T)都等于当前网络的流量f

    小Hi:是这样的。而对于任意一个割的净流f(S,T)一定是小于等于割的容量C(S,T)。那也即是,对于网络的任意一个流f一定是小于等于任意一个割的容量C(S,T)。

    而在所有可能的割中,存在一个容量最小的割,我们称其为最小割

    这个最小割限制了一个网络的流f上界,所以有:

    对于任一个网络流图来说,其最大流一定是小于等于最小割的。

    小Ho:但是这和增广路又有什么关系呢?

    小Hi:接下来就是重点了。利用上面讲的知识,我们可以推出一个最大流最小割定理

    对于一个网络流图G=(V,E),其中有源点s和汇点t,那么下面三个条件是等价的:
    1. 流f是图G的最大流
    2. 残留网络Gf不存在增广路
    3. 对于G的某一个割(S,T),此时f = C(S,T)

    首先证明1 => 2

    我们利用反证法,假设流f是图G的最大流,但是残留网络中还存在有增广路p,其流量为fp。则我们有流f'=f+fp>f。这与f是最大流产生矛盾。

    接着证明2 => 3

    假设残留网络Gf不存在增广路,所以在残留网络Gf中不存在路径从s到达t。我们定义S集合为:当前残留网络中s能够到达的点。同时定义T=V-S。
    此时(S,T)构成一个割(S,T)。且对于任意的u∈S,v∈T,有f(u,v)=c(u,v)。若f(u,v)<c(u,v),则有Gf(u,v)>0,s可以到达v,与v属于T矛盾。
    因此有f(S,T)=Σf(u,v)=Σc(u,v)=C(S,T)。

    最后证明3 => 1

    由于f的上界为最小割,当f到达割的容量时,显然就已经到达最大值,因此f为最大流。

    这样就说明了为什么找不到增广路时,所求得的一定是最大流。

  • 相关阅读:
    R 包安装问题
    特征值分解与奇异值分解
    向量内积&外积
    hdu_3449(有依赖背包)
    Gene co-expression analysis for functional classification and gene–disease predictions
    MCMC & 贝叶斯
    继承(来自视频)
    面向对象 创建对象
    mongodb笔记(三)
    mongodb笔记(二)
  • 原文地址:https://www.cnblogs.com/zzmmm/p/6599517.html
Copyright © 2020-2023  润新知