• Hive常用函数


    窗口函数与分析函数

    应用场景:
    (1)用于分区排序
    (2)动态Group By
    (3)Top N
    (4)累计计算
    (5)层次查询

    窗口函数

    FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
    LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值
    LEAD(col,n,DEFAULT) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
    LAG(col,n,DEFAULT) :与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

    OVER从句

    1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
    2、使用PARTITION BY语句,使用一个或者多个原始数据类型的列
    3、使用PARTITION BYORDER BY语句,使用一个或者多个数据类型的分区或者排序列
    4、使用窗口规范,窗口规范支持以下格式:

    (ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
    (ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
    (ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING
    • 1
    • 2
    • 3

    ORDER BY后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

    ORDER BY和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

    OVER从句支持以下函数, 但是并不支持和窗口一起使用它们。
    Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank.
    Lead 和 Lag 函数.

    分析函数

    ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。
    RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
    DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位
    CUME_DIST 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例
    PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
    NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。

    Hive2.1.0及以后支持Distinct

    在聚合函数(SUM, COUNT and AVG)中,支持distinct,但是在ORDER BY 或者 窗口限制不支持。

    COUNT(DISTINCT a) OVER (PARTITION BY c)
    • 1

    Hive 2.2.0中在使用ORDER BY和窗口限制时支持distinct

    COUNT(DISTINCT a) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
    • 1

    Hive2.1.0及以后支持在OVER从句中支持聚合函数

    SELECT rank() OVER (ORDER BY sum(b))
    FROM T
    GROUP BY a;
    • 1
    • 2
    • 3

    测试数据集:

    ## COUNT、SUM、MIN、MAX、AVG
    select 
        user_id,
        user_type,
        sales,
        --默认为从起点到当前行
        sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc) AS sales_1,
        --从起点到当前行,结果与sales_1不同。
        sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sales_2,
        --当前行+往前3行
        sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS sales_3,
        --当前行+往前3行+往后1行
        sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS sales_4,
        --当前行+往后所有行  
        sum(sales) OVER(PARTITION BY user_type ORDER BY sales asc ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS sales_5,
        --分组内所有行
        SUM(sales) OVER(PARTITION BY user_type) AS sales_6                          
    from 
        order_detail
    order by 
        user_type,
        sales,
        user_id
    
    +----------+------------+--------+----------+----------+----------+----------+----------+----------+--+
    | user_id  | user_type  | sales  | sales_1  | sales_2  | sales_3  | sales_4  | sales_5  | sales_6  |
    +----------+------------+--------+----------+----------+----------+----------+----------+----------+--+
    | liiu     | new        | 1      | 2        | 2        | 2        | 4        | 22       | 23       |
    | qibaqiu  | new        | 1      | 2        | 1        | 1        | 2        | 23       | 23       |
    | zhangsa  | new        | 2      | 4        | 4        | 4        | 7        | 21       | 23       |
    | wanger   | new        | 3      | 7        | 7        | 7        | 12       | 19       | 23       |
    | lilisi   | new        | 5      | 17       | 17       | 15       | 21       | 11       | 23       |
    | qishili  | new        | 5      | 17       | 12       | 11       | 16       | 16       | 23       |
    | wutong   | new        | 6      | 23       | 23       | 19       | 19       | 6        | 23       |
    | lisi     | old        | 1      | 1        | 1        | 1        | 3        | 6        | 6        |
    | wangshi  | old        | 2      | 3        | 3        | 3        | 6        | 5        | 6        |
    | liwei    | old        | 3      | 6        | 6        | 6        | 6        | 3        | 6        |
    +----------+------------+--------+----------+----------+----------+----------+----------+----------+--+
    
    注意:
    结果和ORDER BY相关,默认为升序
    如果不指定ROWS BETWEEN,默认为从起点到当前行;
    如果不指定ORDER BY,则将分组内所有值累加;
    
    关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
    PRECEDING:往前
    FOLLOWING:往后
    CURRENT ROW:当前行
    UNBOUNDED:无界限(起点或终点)
    UNBOUNDED PRECEDING:表示从前面的起点 
    UNBOUNDED FOLLOWING:表示到后面的终点
    其他COUNT、AVG,MIN,MAX,和SUM用法一样。
    ## first_value与last_value
    select 
        user_id,
        user_type,
        ROW_NUMBER() OVER(PARTITION BY user_type ORDER BY sales) AS row_num,  
        first_value(user_id) over (partition by user_type order by sales desc) as max_sales_user,
        first_value(user_id) over (partition by user_type order by sales asc) as min_sales_user,
        last_value(user_id) over (partition by user_type order by sales desc) as curr_last_min_user,
        last_value(user_id) over (partition by user_type order by sales asc) as curr_last_max_user
    from 
        order_detail;
    
    +----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+
    | user_id  | user_type  | row_num  | max_sales_user  | min_sales_user  | curr_last_min_user  | curr_last_max_user  |
    +----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+
    | wutong   | new        | 7        | wutong          | qibaqiu         | wutong              | wutong              |
    | lilisi   | new        | 6        | wutong          | qibaqiu         | qishili             | lilisi              |
    | qishili  | new        | 5        | wutong          | qibaqiu         | qishili             | lilisi              |
    | wanger   | new        | 4        | wutong          | qibaqiu         | wanger              | wanger              |
    | zhangsa  | new        | 3        | wutong          | qibaqiu         | zhangsa             | zhangsa             |
    | liiu     | new        | 2        | wutong          | qibaqiu         | qibaqiu             | liiu                |
    | qibaqiu  | new        | 1        | wutong          | qibaqiu         | qibaqiu             | liiu                |
    | liwei    | old        | 3        | liwei           | lisi            | liwei               | liwei               |
    | wangshi  | old        | 2        | liwei           | lisi            | wangshi             | wangshi             |
    | lisi     | old        | 1        | liwei           | lisi            | lisi                | lisi                |
    +----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+
    
    ## lead与lag
    select 
        user_id,device_id,
        lead(device_id) over (order by sales) as default_after_one_line,
        lag(device_id) over (order by sales) as default_before_one_line,
        lead(device_id,2) over (order by sales) as after_two_line,
        lag(device_id,2,'abc') over (order by sales) as before_two_line
    from 
        order_detail;
    
    +----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+
    | user_id  |  device_id  | default_after_one_line  | default_before_one_line  | after_two_line  | before_two_line  |
    +----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+
    | qibaqiu  | fds         | fdsfagwe                | NULL                     | 543gfd          | abc              |
    | liiu     | fdsfagwe    | 543gfd                  | fds                      | f332            | abc              |
    | lisi     | 543gfd      | f332                    | fdsfagwe                 | dfsadsa323      | fds              |
    | wangshi  | f332        | dfsadsa323              | 543gfd                   | hfd             | fdsfagwe         |
    | zhangsa  | dfsadsa323  | hfd                     | f332                     | 65ghf           | 543gfd           |
    | liwei    | hfd         | 65ghf                   | dfsadsa323               | fds             | f332             |
    | wanger   | 65ghf       | fds                     | hfd                      | dsfgg           | dfsadsa323       |
    | qishili  | fds         | dsfgg                   | 65ghf                    | 543gdfsd        | hfd              |
    | lilisi   | dsfgg       | 543gdfsd                | fds                      | NULL            | 65ghf            |
    | wutong   | 543gdfsd    | NULL                    | dsfgg                    | NULL            | fds              |
    +----------+-------------+-------------------------+--------------------------+-----------------+------------------+--+
    
    ## RANK、ROW_NUMBER、DENSE_RANK
    select 
        user_id,user_type,sales,
        RANK() over (partition by user_type order by sales desc) as r,
        ROW_NUMBER() over (partition by user_type order by sales desc) as rn,
        DENSE_RANK() over (partition by user_type order by sales desc) as dr
    from
        order_detail;   
    
    
    +----------+------------+--------+----+-----+-----+--+
    | user_id  | user_type  | sales  | r  | rn  | dr  |
    +----------+------------+--------+----+-----+-----+--+
    | wutong   | new        | 6      | 1  | 1   | 1   |
    | qishili  | new        | 5      | 2  | 2   | 2   |
    | lilisi   | new        | 5      | 2  | 3   | 2   |
    | wanger   | new        | 3      | 4  | 4   | 3   |
    | zhangsa  | new        | 2      | 5  | 5   | 4   |
    | qibaqiu  | new        | 1      | 6  | 6   | 5   |
    | liiu     | new        | 1      | 6  | 7   | 5   |
    | liwei    | old        | 3      | 1  | 1   | 1   |
    | wangshi  | old        | 2      | 2  | 2   | 2   |
    | lisi     | old        | 1      | 3  | 3   | 3   |
    +----------+------------+--------+----+-----+-----+--+  
    ## NTILE
    
    select 
        user_type,sales,
        --分组内将数据分成2片
        NTILE(2) OVER(PARTITION BY user_type ORDER BY sales) AS nt2,
        --分组内将数据分成3片    
        NTILE(3) OVER(PARTITION BY user_type ORDER BY sales) AS nt3,
        --分组内将数据分成4片    
        NTILE(4) OVER(PARTITION BY user_type ORDER BY sales) AS nt4,
        --将所有数据分成4片
        NTILE(4) OVER(ORDER BY sales) AS all_nt4
    from 
        order_detail
    order by 
        user_type,
        sales
    
    
    +------------+--------+------+------+------+----------+--+
    | user_type  | sales  | nt2  | nt3  | nt4  | all_nt4  |
    +------------+--------+------+------+------+----------+--+
    | new        | 1      | 1    | 1    | 1    | 1        |
    | new        | 1      | 1    | 1    | 1    | 1        |
    | new        | 2      | 1    | 1    | 2    | 2        |
    | new        | 3      | 1    | 2    | 2    | 3        |
    | new        | 5      | 2    | 2    | 3    | 4        |
    | new        | 5      | 2    | 3    | 3    | 3        |
    | new        | 6      | 2    | 3    | 4    | 4        |
    | old        | 1      | 1    | 1    | 1    | 1        |
    | old        | 2      | 1    | 2    | 2    | 2        |
    | old        | 3      | 2    | 3    | 3    | 2        |
    +------------+--------+------+------+------+----------+--+
    
    
    求取sale前20%的用户ID
    
    select
        user_id
    from
    (
        select 
            user_id,
            NTILE(5) OVER(ORDER BY sales desc) AS nt
        from 
            order_detail
    )A
    where nt=1;
    ## CUME_DIST、PERCENT_RANK 
    
    select 
    user_id,user_type,sales,
    --没有partition,所有数据均为1组
    CUME_DIST() OVER(ORDER BY sales) AS cd1,
    --按照user_type进行分组
    CUME_DIST() OVER(PARTITION BY user_type ORDER BY sales) AS cd2 
    from 
    order_detail;   
    
    +----------+------------+--------+------+----------------------+--+
    | user_id  | user_type  | sales  | cd1  |         cd2          |
    +----------+------------+--------+------+----------------------+--+
    | liiu     | new        | 1      | 0.3  | 0.2857142857142857   |
    | qibaqiu  | new        | 1      | 0.3  | 0.2857142857142857   |
    | zhangsa  | new        | 2      | 0.5  | 0.42857142857142855  |
    | wanger   | new        | 3      | 0.7  | 0.5714285714285714   |
    | lilisi   | new        | 5      | 0.9  | 0.8571428571428571   |
    | qishili  | new        | 5      | 0.9  | 0.8571428571428571   |
    | wutong   | new        | 6      | 1.0  | 1.0                  |
    | lisi     | old        | 1      | 0.3  | 0.3333333333333333   |
    | wangshi  | old        | 2      | 0.5  | 0.6666666666666666   |
    | liwei    | old        | 3      | 0.7  | 1.0                  |
    +----------+------------+--------+------+----------------------+--+
    
    
    select 
    user_type,sales
    --分组内总行数      
    SUM(1) OVER(PARTITION BY user_type) AS s, 
    --RANK值  
    RANK() OVER(ORDER BY sales) AS r,    
    PERCENT_RANK() OVER(ORDER BY sales) AS pr,
    --分组内     
    PERCENT_RANK() OVER(PARTITION BY user_type ORDER BY sales) AS prg 
    from 
    order_detail;   
    
    +----+-----+---------------------+---------------------+--+
    | s  |  r  |         pr          |         prg         |
    +----+-----+---------------------+---------------------+--+
    | 7  | 1   | 0.0                 | 0.0                 |
    | 7  | 1   | 0.0                 | 0.0                 |
    | 7  | 4   | 0.3333333333333333  | 0.3333333333333333  |
    | 7  | 6   | 0.5555555555555556  | 0.5                 |
    | 7  | 8   | 0.7777777777777778  | 0.6666666666666666  |
    | 7  | 8   | 0.7777777777777778  | 0.6666666666666666  |
    | 7  | 10  | 1.0                 | 1.0                 |
    | 3  | 1   | 0.0                 | 0.0                 |
    | 3  | 4   | 0.3333333333333333  | 0.5                 |
    | 3  | 6   | 0.5555555555555556  | 1.0                 |
    +----+-----+---------------------+---------------------+--+

    增强的聚合 Cube和Grouping 和Rollup

    这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

    GROUPING SETS
    在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL,
    其中的GROUPING__ID,表示结果属于哪一个分组集合。

    select
        user_type,
        sales,
        count(user_id) as pv,
        GROUPING__ID 
    from 
        order_detail
    group by 
        user_type,sales
    GROUPING SETS(user_type,sales) 
    ORDER BY 
        GROUPING__ID;
    
    +------------+--------+-----+---------------+--+
    | user_type  | sales  | pv  | grouping__id  |
    +------------+--------+-----+---------------+--+
    | old        | NULL   | 3   | 1             |
    | new        | NULL   | 7   | 1             |
    | NULL       | 6      | 1   | 2             |
    | NULL       | 5      | 2   | 2             |
    | NULL       | 3      | 2   | 2             |
    | NULL       | 2      | 2   | 2             |
    | NULL       | 1      | 3   | 2             |
    +------------+--------+-----+---------------+--+
    
    select
        user_type,
        sales,
        count(user_id) as pv,
        GROUPING__ID 
    from 
        order_detail
    group by 
        user_type,sales
    GROUPING SETS(user_type,sales,(user_type,sales)) 
    ORDER BY 
        GROUPING__ID;
    
    +------------+--------+-----+---------------+--+
    | user_type  | sales  | pv  | grouping__id  |
    +------------+--------+-----+---------------+--+
    | old        | NULL   | 3   | 1             |
    | new        | NULL   | 7   | 1             |
    | NULL       | 1      | 3   | 2             |
    | NULL       | 6      | 1   | 2             |
    | NULL       | 5      | 2   | 2             |
    | NULL       | 3      | 2   | 2             |
    | NULL       | 2      | 2   | 2             |
    | old        | 3      | 1   | 3             |
    | old        | 2      | 1   | 3             |
    | old        | 1      | 1   | 3             |
    | new        | 6      | 1   | 3             |
    | new        | 5      | 2   | 3             |
    | new        | 3      | 1   | 3             |
    | new        | 1      | 2   | 3             |
    | new        | 2      | 1   | 3             |
    +------------+--------+-----+---------------+--+

    CUBE
    根据GROUP BY的维度的所有组合进行聚合。

    select
        user_type,
        sales,
        count(user_id) as pv,
        GROUPING__ID 
    from 
        order_detail
    group by 
        user_type,sales
    WITH CUBE 
    ORDER BY 
        GROUPING__ID;
    
    +------------+--------+-----+---------------+--+
    | user_type  | sales  | pv  | grouping__id  |
    +------------+--------+-----+---------------+--+
    | NULL       | NULL   | 10  | 0             |
    | new        | NULL   | 7   | 1             |
    | old        | NULL   | 3   | 1             |
    | NULL       | 6      | 1   | 2             |
    | NULL       | 5      | 2   | 2             |
    | NULL       | 3      | 2   | 2             |
    | NULL       | 2      | 2   | 2             |
    | NULL       | 1      | 3   | 2             |
    | old        | 3      | 1   | 3             |
    | old        | 2      | 1   | 3             |
    | old        | 1      | 1   | 3             |
    | new        | 6      | 1   | 3             |
    | new        | 5      | 2   | 3             |
    | new        | 3      | 1   | 3             |
    | new        | 2      | 1   | 3             |
    | new        | 1      | 2   | 3             |
    +------------+--------+-----+---------------+--+

    ROLLUP
    是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

    select
        user_type,
        sales,
        count(user_id) as pv,
        GROUPING__ID 
    from 
        order_detail
    group by 
        user_type,sales
    WITH ROLLUP 
    ORDER BY 
        GROUPING__ID;
    
    +------------+--------+-----+---------------+--+
    | user_type  | sales  | pv  | grouping__id  |
    +------------+--------+-----+---------------+--+
    | NULL       | NULL   | 10  | 0             |
    | old        | NULL   | 3   | 1             |
    | new        | NULL   | 7   | 1             |
    | old        | 3      | 1   | 3             |
    | old        | 2      | 1   | 3             |
    | old        | 1      | 1   | 3             |
    | new        | 6      | 1   | 3             |
    | new        | 5      | 2   | 3             |
    | new        | 3      | 1   | 3             |
    | new        | 2      | 1   | 3             |
    | new        | 1      | 2   | 3             |
    +------------+--------+-----+---------------+--+
  • 相关阅读:
    实现h5中radio单击取消与选中
    小程序中的组件化理解
    阿里字体css代码引入方法
    前端布局心得小结
    Python学习资源汇总,转载自他人
    史上最全 原生javascript的知识总结,适合新手及查资料用!
    windows Python 3.4.3 安装图文
    PyInstaller编译python3时使用的详细参数介绍
    PyInstaller 安装方法 及简单的编译exe (python3)
    Windows 安装 GTK+ 图文说明
  • 原文地址:https://www.cnblogs.com/zzjhn/p/14120921.html
Copyright © 2020-2023  润新知