常系数差分方程
常系数差分方程的一些概念
一阶常系数差分方程:(y(n) + a y(n-1) = x(n))
二阶常系数差分方程:(y(n) + a_1 y(n-1) + a_2 y(n-2) = x(n))
(N)阶常系数差分方程:(sum_{i=0}^{N}a_i y(n-i) = sum_{i=0}^{N}b_i x(n-i))
解差分方程
通常我们会得到一个未知的差分方程,他的右边是已经确定的,系数是常系数,左边是未知的.
求解这个方程的操作就是解差分方程.
递推法求常系数差分方程
例1:假如有一种细胞,它每一分钟可以增殖出一个新细胞,但是这些在出现的第二分钟开始他才能开始增殖.如果一开始只有一个细胞(当前还不能增殖),求第5分钟有多少个细胞
[设y(n)是第n分钟的细胞数量\
那么\
y(n)=2*y(n-2)+y(n-1)-y(n-2)\
=y(n-2)+y(n-1)\
已知y(1)=1,y(2)=1,y(3)=2\
y(4)=y(2)+y(3)=3\
y(5)=y(3)+y(4)=5\
所以第五分钟有5个细胞
]
例2:假如有一种细胞,它每一分钟可以增殖出一个新细胞,但是这些在出现的第二分钟开始他才能开始增殖,而且只能增殖1次.如果一开始只有一个细胞(当前还不能增殖),求第7分钟有多少个细胞
[设y(n)是第n分钟的细胞数量\
那么\
y(n)=2*(y(n-2)-y(n-3))+y(n-1)-y(n-2)+y(n-3)\
=y(n-1)+y(n-2)-y(n-3)\
已知y(1)=1,y(2)=1,y(3)=2,y(4)=2\
所以y(5)=3,y(6)=3,y(7)=4\
所以第七分钟有4个细胞
]
例3:已知线性因果系统的差分方程为(y(n)-frac{1}{2} y(n-1)=x(n)),求其脉冲单位响应(h(n))
[当输入为一个单位脉冲信号时delta(n)时,脉冲响应信号就是h(n)\
所以h(n)=delta(n)+frac{1}{2}h(n-1)\
h(0)=delta(0)+frac{1}{2}h(-1)=frac{1}{2}(1+frac{1}{2}h(-1))\
h(1)=delta(1)+frac{1}{2}h(0)=frac{1}{2}cdotfrac{1}{2}(1+frac{1}{2}h(-1))\
...\
因为系统是因果的,所以在n<0的时候,h(n)都为0.\
所以,h(n)=frac{1}{2^{n}}u(n)\
]