pandas的拼接操作
pandas的拼接分为两种:
- 级联:pd.concat, pd.append
- 合并:pd.merge, pd.join
import pandas as pd
import numpy as np
from pandas import DataFrame,Series
一. 使用pd.concat()级联
pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:
objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False
1)匹配级联
行列索引均一致
df1 = DataFrame(data=np.random.randint(0,100,size=(3,4)))
df1
|
0 |
1 |
2 |
3 |
0 |
61 |
89 |
68 |
51 |
1 |
46 |
79 |
1 |
55 |
2 |
52 |
4 |
72 |
18 |
df2 = DataFrame(data=np.random.randint(0,100,size=(3,4)))
df2
|
0 |
1 |
2 |
3 |
0 |
15 |
62 |
20 |
78 |
1 |
60 |
79 |
70 |
58 |
2 |
71 |
87 |
20 |
95 |
pd.concat((df1,df2),axis=0) # axis=0表示Y轴级联
|
0 |
1 |
2 |
3 |
0 |
61 |
89 |
68 |
51 |
1 |
46 |
79 |
1 |
55 |
2 |
52 |
4 |
72 |
18 |
0 |
15 |
62 |
20 |
78 |
1 |
60 |
79 |
70 |
58 |
2 |
71 |
87 |
20 |
95 |
2) 不匹配级联
不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致
有2种连接方式:
-
外连接:补NaN(默认模式)
-
内连接:只连接匹配的项
df1 = DataFrame(data=np.random.randint(0,100,size=(3,4)))
df2 = DataFrame(data=np.random.randint(0,100,size=(3,3)))
pd.concat((df1,df2),axis=0)
|
0 |
1 |
2 |
3 |
0 |
55 |
61 |
54 |
56.0 |
1 |
10 |
14 |
6 |
62.0 |
2 |
39 |
27 |
99 |
81.0 |
0 |
31 |
49 |
80 |
NaN |
1 |
73 |
42 |
44 |
NaN |
2 |
67 |
68 |
97 |
NaN |
pd.concat((df1,df2),axis=0,join='inner') # inner内连接,只级联匹配的项
|
0 |
1 |
2 |
0 |
55 |
61 |
54 |
1 |
10 |
14 |
6 |
2 |
39 |
27 |
99 |
0 |
31 |
49 |
80 |
1 |
73 |
42 |
44 |
2 |
67 |
68 |
97 |
二. 使用pd.merge()合并
merge与concat的区别在于,merge需要依据某一共同的列来进行合并
使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。
注意每一列元素的顺序不要求一致
参数:
1) 一对一合并
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering'],
})
df1
|
employee |
group |
0 |
Bob |
Accounting |
1 |
Jake |
Engineering |
2 |
Lisa |
Engineering |
df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
'hire_date':[2004,2008,2012],
})
df2
|
employee |
hire_date |
0 |
Lisa |
2004 |
1 |
Bob |
2008 |
2 |
Jake |
2012 |
pd.merge(df1, df2) # 按照employee进行了合并
|
employee |
group |
hire_date |
0 |
Bob |
Accounting |
2008 |
1 |
Jake |
Engineering |
2012 |
2 |
Lisa |
Engineering |
2004 |
2) 多对一合并
df3 = DataFrame({
'employee':['Lisa','Jake'],
'group':['Accounting','Engineering'],
'hire_date':[2004,2016]})
df3
|
employee |
group |
hire_date |
0 |
Lisa |
Accounting |
2004 |
1 |
Jake |
Engineering |
2016 |
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
'supervisor':['Carly','Guido','Steve']
})
df4
|
group |
supervisor |
0 |
Accounting |
Carly |
1 |
Engineering |
Guido |
2 |
Engineering |
Steve |
pd.merge(df3, df4)
|
employee |
group |
hire_date |
supervisor |
0 |
Lisa |
Accounting |
2004 |
Carly |
1 |
Jake |
Engineering |
2016 |
Guido |
2 |
Jake |
Engineering |
2016 |
Steve |
3) 多对多合并
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering']})
df1
|
employee |
group |
0 |
Bob |
Accounting |
1 |
Jake |
Engineering |
2 |
Lisa |
Engineering |
df2 = DataFrame({'group':['Engineering','Engineering','HR'],
'supervisor':['Carly','Guido','Steve']
})
df2
|
group |
supervisor |
0 |
Engineering |
Carly |
1 |
Engineering |
Guido |
2 |
HR |
Steve |
pd.merge(df1,df2,how='right') # right表示右连接
|
employee |
group |
supervisor |
0 |
Jake |
Engineering |
Carly |
1 |
Lisa |
Engineering |
Carly |
2 |
Jake |
Engineering |
Guido |
3 |
Lisa |
Engineering |
Guido |
4 |
NaN |
HR |
Steve |
4) key的规范化
- 当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
df1 = DataFrame({'employee':['Jack',"Summer","Steve"],
'group':['Accounting','Finance','Marketing']})
df1
|
employee |
group |
0 |
Jack |
Accounting |
1 |
Summer |
Finance |
2 |
Steve |
Marketing |
df2 = DataFrame({'employee':['Jack','Bob',"Jake"],
'hire_date':[2003,2009,2012],
'group':['Accounting','sell','ceo']})
df2
|
employee |
group |
hire_date |
0 |
Jack |
Accounting |
2003 |
1 |
Bob |
sell |
2009 |
2 |
Jake |
ceo |
2012 |
pd.merge(df1,df2,on='employee') # 默认按照employee和group进行合并,可以指定列名
|
employee |
group_x |
group_y |
hire_date |
0 |
Jack |
Accounting |
Accounting |
2003 |
- 当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列
df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
'group':['Accounting','Product','Marketing'],
'hire_date':[1998,2017,2018]})
df1
|
employee |
group |
hire_date |
0 |
Bobs |
Accounting |
1998 |
1 |
Linda |
Product |
2017 |
2 |
Bill |
Marketing |
2018 |
df2 = DataFrame({'name':['Lisa','Bobs','Bill'],
'hire_dates':[1998,2016,2007]})
df2
|
hire_dates |
name |
0 |
1998 |
Lisa |
1 |
2016 |
Bobs |
2 |
2007 |
Bill |
pd.merge(df1,df2,left_on='employee',right_on='name',how='outer')
|
employee |
group |
hire_date |
hire_dates |
name |
0 |
Bobs |
Accounting |
1998.0 |
2016.0 |
Bobs |
1 |
Linda |
Product |
2017.0 |
NaN |
NaN |
2 |
Bill |
Marketing |
2018.0 |
2007.0 |
Bill |
3 |
NaN |
NaN |
NaN |
1998.0 |
Lisa |
5) 内合并与外合并:out取并集 inner取交集
df6 = DataFrame({'name':['Peter','Paul','Mary'],
'food':['fish','beans','bread']}
)
df6
|
food |
name |
0 |
fish |
Peter |
1 |
beans |
Paul |
2 |
bread |
Mary |
df7 = DataFrame({'name':['Mary','Joseph'],
'drink':['wine','beer']})
df7
|
drink |
name |
0 |
wine |
Mary |
1 |
beer |
Joseph |
pd.merge(df6, df7)
|
food |
name |
drink |
0 |
bread |
Mary |
wine |
pd.merge(df6, df7, how='outer')
|
food |
name |
drink |
0 |
fish |
Peter |
NaN |
1 |
beans |
Paul |
NaN |
2 |
bread |
Mary |
wine |
3 |
NaN |
Joseph |
beer |