• 方差分析--实践


    一、案例:

    有A、B、C、D四个地区,不同地区的销售量不一样,现抽取了不同时间段内每个地区的销售量,试解决:

    1、每个地区间的销售量是否相同?

    2、不同月份的销售量是否相同?

    3、不同时间与地区的销售量是否相同?

    二、数据:

     问题1:

    用单因素方差分析,先假设,再构造统计量,最后进行决策
    (1)假设H0,即假设样本A,B,C,D的均值相同,不同地区无显著性影响。H1:样本A,B,C,D均值不全相等,有显著性影响。
    ​(2)构造统计量,因素为地区,水平为4,因变量为销售量。
    import numpy as np
    import scipy.stats as stats
    import pandas as pd
    #读取数据
    data=pd.read_excel("销售数据.xlsx")
    
    print(data.describe())  #统计数量、均值、标准差、上下四分位
    print(data.mean().sum()/4)  #输出对应的总体均值
    总平方和SST=95533231.1875+61867762.1875+86597368.1875+36583242.6875
    组间平方和SSA=57894573.5196352
    组内平方和SSE=222687030.727273
    MSA=SSA/(4-1)=19298191.17 , MSE =SSE/(N-K)=31812432.96,
    检验统计量F=MSA/MSE=0.606624184 , 在给定显著性水平a=0.05,在F分布表中查找分子自由度df1=4-1=3,分母自由度df2=n-k=11-4=7,相应的临界值Fa(3,7)=4.347,F<Fa 则不拒绝原假设H0,即认为各地区对销售量影响不显著。

    问题2:

    1)假设H0:各月的均值相等,即各个月份对销售量无显著影响;H1:各个月份均值不完全相同,即不同月份对销售量有显著影响。

    (2)构造和计算统计量
    (所有数据按照月份分组,2019年3月数据少4行,因此保留前12行分析数据)
    1)计算总体均值:5898.5,水平为3
    2)总平方和SST=205887565
    3)组间平方和SSA=39687746
    4)组内平方和SSE=SST−SSA=205887565−39687746=166199819
    5)MSA=SSA/(3-1)=19843873
    MSE=SSE/(n-k)=SSE/(12-3)=18466646.56
    6)F=MSAMSE=1.074579131
    (3)决策分析,F<Fa=Fa(2,9)=4.256,不拒绝原假设,即各个月份影响不显著。



    问题3:

    按照无交互作用的双因素方差分析方法
    (1)假设(2)构造统计量和计算(3)决策

    (1)行因素:H0:假设日期对销售量无显著影响;H1:日期对销售量有显著影响;
    列因素:H0:假设地区对销售量无显著影响H1:地区对销售量有显著影响列因素。
    (2)构造统计量并计算:

     

     (3)从上表中可以看出Fr<Fa,Fc<Fa,分别从地区、日期都对销售量影响不显著。


    转自:https://www.jianshu.com/p/e248bdd18edc
  • 相关阅读:
    aspx有"记住我"的登录
    Aspx比较简单的登录
    内容显示分页数字分页 aspx
    Ashx登录
    Aspx 验证码_各种封装
    IsPostBack的使用
    Ashx增删改查_动软
    一般处理程序ashx
    dispatch_after
    pch文件的作用
  • 原文地址:https://www.cnblogs.com/zym-yc/p/12354814.html
Copyright © 2020-2023  润新知