题目描述
今年是国际数学联盟确定的“2000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:
设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。
同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串:312, 当N=3,K=1时会有以下两种分法:
1) 3*12=36
2) 31*2=62
这时,符合题目要求的结果是:31*2=62
现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。
设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。
同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串:312, 当N=3,K=1时会有以下两种分法:
1) 3*12=36
2) 31*2=62
这时,符合题目要求的结果是:31*2=62
现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。
输入
程序的输入共有两行:
第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)
第二行是一个长度为N的数字串。
第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)
第二行是一个长度为N的数字串。
输出
结果显示在屏幕上,相对于输入,应输出所求得的最大乘积(一个自然数)。
样例输入
4 2
1231
样例输出
62
分析:第一眼看就觉得是区间dp,状态转移方程倒一眼看出来了,但最终还是没有搞出来。我还是太弱了啊
设dp[i][j][k]表示第i位到第j位,划分k次的最大值那么有 dp[i][j][k]=max(dp[i][x][y]*dp[x+1][j][k-y]),i<=x<=j,0<=y<=k
#include <iostream> #include <bits/stdc++.h> using namespace std; int dp[50][50][50]={0}; int num[50][50]={0}; char a[55]={0}; int main() { int n,k,i,j; scanf("%d%d",&n,&k); cin>>a; for(i=0;i<n;i++) { num[i][i]=a[i]-48; dp[i][i][0]=num[i][i]; for(j=i+1;j<n;j++) { num[i][j]=num[i][j-1]*10+a[j]-'0'; dp[i][j][0]=num[i][j]; } } for(int i=0; i<n; i++) { for(j=i+1; j<n; j++) { for(int kk=1; kk<=k; kk++) { long long maxx = 0; for(int m=i; m<=j; m++) { for(int left=0; left<=kk; left++) { if(dp[i][m][left]*dp[m+1][j][kk-left-1]>maxx) maxx=dp[i][m][left]*dp[m+1][j][kk-left-1]; } } dp[i][j][kk] = maxx; } } } cout << dp[0][n-1][k]<<endl; return 0; }
j,y<=k;