编程实现单词去重要用到NullWritable类型。
NullWritable:
NullWritable 是一种特殊的Writable 类型,由于它的序列化是零长度的,所以没有字节被写入流或从流中读出,可以用作占位符。比如,在MapReduce 中,在不需要这个位置的时候,键或值能够被声明为NullWritable,从而有效存储一个不变的空值。
通过调用NullWritable.get() 方法来检索。
单词去重我们最后要输出的形式是<单词>,所以值可以声明为NullWritable。
代码如下:
1 package org.apache.hadoop.examples; 2 3 import java.io.IOException; 4 import java.util.Iterator; 5 import java.util.StringTokenizer; 6 import org.apache.hadoop.conf.Configuration; 7 import org.apache.hadoop.fs.Path; 8 import org.apache.hadoop.io.IntWritable; 9 import org.apache.hadoop.io.NullWritable; 10 import org.apache.hadoop.io.Text; 11 import org.apache.hadoop.mapreduce.Job; 12 import org.apache.hadoop.mapreduce.Mapper; 13 import org.apache.hadoop.mapreduce.Reducer; 14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 16 17 public class DistinctWord{ 18 public DistinctWord() { 19 } 20 21 public static void main(String[] args) throws Exception { 22 Configuration conf = new Configuration(); 23 24 //String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs(); 25 String[] otherArgs = new String[]{"input","output"}; //设置输入和输出 26 if(otherArgs.length < 2) { 27 System.err.println("Usage: wordcount <in> [<in>...] <out>"); 28 System.exit(2); 29 } 30 31 Job job = Job.getInstance(conf, "distinct word"); 32 33 job.setJarByClass(DistinctWord.class); //设置jar包所在路径 34 35 //指定Mapper和Reducer类 36 job.setMapperClass(DistinctWord.DistinctWordMapper.class); 37 job.setCombinerClass(DistinctWord.DistinctWordReducer.class); 38 job.setReducerClass(DistinctWord.DistinctWordReducer.class); 39 40 //指定MapTask的输出类型 41 job.setMapOutputKeyClass(Text.class); 42 job.setMapOutputValueClass(NullWritable.class); 43 44 //指定ReduceTask的输出类型 45 job.setOutputKeyClass(Text.class); 46 job.setOutputValueClass(NullWritable.class); 47 48 //指定数据输入路径 49 for(int i = 0; i < otherArgs.length - 1; ++i) { 50 FileInputFormat.addInputPath(job, new Path(otherArgs[i])); 51 } 52 53 //指定数据输出路径 54 FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1])); 55 56 //提交任务 57 System.exit(job.waitForCompletion(true)?0:1); 58 } 59 60 61 //输出类型定义为NullWritable 62 public static class DistinctWordMapper extends Mapper<Object, Text, Text, NullWritable> { 63 private Text word = new Text(); 64 65 public DistinctWordMapper() { 66 } 67 68 public void map(Object key, Text value, Mapper<Object, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException { 69 StringTokenizer itr = new StringTokenizer(value.toString()); //分词器 70 71 while(itr.hasMoreTokens()) { 72 this.word.set(itr.nextToken()); 73 context.write(this.word, NullWritable.get()); 74 } 75 76 } 77 } 78 79 80 81 public static class DistinctWordReducer extends Reducer<Text, NullWritable, Text, NullWritable> { 82 83 public DistinctWordReducer() { 84 } 85 86 //reduce方法每调用一次,就接收到一组相同的单词,所以直接输出一次key即可。 87 public void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException { 88 context.write(key, NullWritable.get()); 89 } 90 } 91 92 93 }