This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
----------------------------------------
题目大意:
给定n个节点和m条有向边,判断给定的节点序列是否满足拓扑排序
解:
记录每个点的入度,对每个输入点判断入度是否为零。
细节:
vector<int>tr(in,in+1+n) 数组复制时考虑下标要相同
对于一组数据,用flag判断结果,注意中途输出和break是否会打乱逻辑,如本题当前组的数据还没有读完
#include<stdio.h> #include<iostream> #include<vector> #include<stdlib.h> #define maxn 1010 using namespace std; int n, m, k; vector<int>edge[maxn]; int in[maxn]; int main() { cin >> n >> m; for (int i = 0, u, v; i < m; i++) { cin >> u >> v; edge[u].push_back(v); in[v]++; } cin >> k; int res = 0; for (int i = 0; i < k; i++) { int flag = 1; int u; vector<int>tr(in, in + n + 1); // tr的下标要和in对应 for (int j = 0; j < n; j++) { cin >> u; if (tr[u]) { flag = 0; //break;此次不能break;上面还有cin>>u数据还没读完 } for (auto z : edge[u]) tr[z]--; } if (1 == flag) continue; printf("%s%d", res == 0 ? "" : " ", i); res = 1; } // system("pause"); return 0; }