题目描述
在网友的国度中共有 nnn 种不同面额的货币,第 iii 种货币的面额为 a[i]a[i]a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 nnn、面额数组为 a[1..n]a[1..n]a[1..n] 的货币系统记作 (n,a)(n,a)(n,a)。
在一个完善的货币系统中,每一个非负整数的金额 xxx 都应该可以被表示出,即对每一个非负整数 xxx,都存在 nnn 个非负整数 t[i]t[i]t[i] 满足 a[i]×t[i]a[i] imes t[i]a[i]×t[i] 的和为 xxx。然而, 在网友的国度中,货币系统可能是不完善的,即可能存在金额 xxx 不能被该货币系统表示出。例如在货币系统 n=3n=3n=3, a=[2,5,9]a=[2,5,9]a=[2,5,9] 中,金额 1,31,31,3 就无法被表示出来。
两个货币系统 (n,a)(n,a)(n,a) 和 (m,b)(m,b)(m,b) 是等价的,当且仅当对于任意非负整数 xxx,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。
现在网友们打算简化一下货币系统。他们希望找到一个货币系统 (m,b)(m,b)(m,b),满足 (m,b)(m,b)(m,b) 与原来的货币系统 (n,a)(n,a)(n,a) 等价,且 mmm 尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的 mmm。
输入输出格式
输入格式:输入文件的第一行包含一个整数 TTT,表示数据的组数。
接下来按照如下格式分别给出 TTT 组数据。 每组数据的第一行包含一个正整数 nnn。接下来一行包含 nnn 个由空格隔开的正整数 a[i]a[i]a[i]。
输出格式:输出文件共有 TTT 行,对于每组数据,输出一行一个正整数,表示所有与 (n,a)(n,a)(n,a) 等价的货币系统 (m,b)(m,b)(m,b) 中,最小的 mmm。
输入输出样例
说明
在第一组数据中,货币系统 (2,[3,10])(2, [3,10])(2,[3,10]) 和给出的货币系统 (n,a)(n, a)(n,a) 等价,并可以验证不存在 m<2m < 2m<2 的等价的货币系统,因此答案为 222。 在第二组数据中,可以验证不存在 m<nm < nm<n 的等价的货币系统,因此答案为 555。
【数据范围与约定】
对于 100%100\%100% 的数据,满足 1≤T≤20,n,a[i]≥11 ≤ T ≤ 20, n,a[i] ≥ 11≤T≤20,n,a[i]≥1。
贪心地排序,那么问题就等价于如果大的数可以被小的数表示,那么就可以标记;
我们就可以用完全背包来做即可;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 400005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int T; int n; int a[maxn]; int Hash[maxn]; int main() { //ios::sync_with_stdio(0); rdint(T); while (T--) { int ans = 0; rdint(n); ms(a); ms(Hash); for (int i = 1; i <= n; i++)rdint(a[i]); sort(a + 1, a + 1 + n); Hash[0] = 1; for (int i = 1; i <= n; i++) { if (!Hash[a[i]])ans++; for (int j = a[i]; j <= 25000; j++)if (Hash[j - a[i]])Hash[j] = 1; } cout << ans << endl; } return 0; }