• [POI2007]ZAP-Queries 数学


    题目描述

    Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He has alreadyfound out that whilst deciphering a message he will have to answer multiple queries of the form"for givenintegers aaa, bbb and ddd, find the number of integer pairs (x,y)(x,y)(x,y) satisfying the following conditions:

    1≤x≤a1le xle a1xa,1≤y≤b1le yle b1yb,gcd(x,y)=dgcd(x,y)=dgcd(x,y)=d, where gcd(x,y)gcd(x,y)gcd(x,y) is the greatest common divisor of xxx and yyy".

    Byteasar would like to automate his work, so he has asked for your help.

    TaskWrite a programme which:

    reads from the standard input a list of queries, which the Byteasar has to give answer to, calculates answers to the queries, writes the outcome to the standard output.

    FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

    输入输出格式

    输入格式:

    The first line of the standard input contains one integer nnn (1≤n≤50 0001le nle 50 0001n50 000),denoting the number of queries.

    The following nnn lines contain three integers each: aaa, bbb and ddd(1≤d≤a,b≤50 0001le dle a,ble 50 0001da,b50 000), separated by single spaces.

    Each triplet denotes a single query.

    输出格式:

    Your programme should write nnn lines to the standard output. The iii'th line should contain a single integer: theanswer to the iii'th query from the standard input.

    输入输出样例

    输入样例#1: 复制
    2
    4 5 2
    6 4 3
    输出样例#1: 复制
    3
    2
    
    
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<time.h>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize(2)
    using namespace std;
    #define maxn 200005
    #define inf 0x7fffffff
    //#define INF 1e18
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    #define mclr(x,a) memset((x),a,sizeof(x))
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 98765431;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-5
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    //const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    
    inline int rd() {
    	int x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    int sqr(int x) { return x * x; }
    
    
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    int n;
    int mu[maxn+10], vis[maxn+10];
    int sum[maxn + 10];
    void init() {
    	for (int i = 1; i < maxn; i++)mu[i] = 1, vis[i] = 0;
    	for (int i = 2; i < maxn; i++) {
    		if (vis[i])continue;
    		mu[i] = -1;
    		for (int j = 2 * i; j < maxn; j += i) {
    			vis[j] = 1;
    			if ((j / i) % i == 0)mu[j] = 0;
    			else mu[j] *= -1;
    		}
    	}
    	for (int i = 1; i < maxn; i++)sum[i] = sum[i - 1] + mu[i];
    }
    int main()
    {
    	//	ios::sync_with_stdio(0);
    	init();
    	n = rd();
    	while (n--) {
    		int a = rd(), b = rd(), d = rd();
    		ll ans = 0;
    		for (int l = 1, r; l <= (min(a, b) / d); l = r + 1) {
    			r = min((a / d) / (a / d / l), (b / d) / (b / d / l));
    			ans += 1ll * (sum[r] - sum[l - 1])*(a / d / l)*(b / d / l);
    		}
    		cout << (ll)ans << endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    生成排列与生成子集
    赛后总结AtCoder Beginner Contest 090(Beginner)
    树状数组笔记
    论怎么记住tarjan的板子
    tarjan缩点-受欢迎的牛-笔记
    tarjan模板(%%%hzwer)-2.0
    tarjan模板(%%%hzwer)
    匈牙利算法学习笔记
    最短路-Car的旅行路线
    数据结构 笔记1 搜索树
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10368228.html
Copyright © 2020-2023  润新知