Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
给你一个顶点数组,例如{4,7,9},这个定点数组代表直角坐标系上三个点,(1,4),(2,7),(3,9),然后过这三个点,分别作垂直于X轴的线段,例如对于(1,4),线段的两个端点为(1,4)和(1,0),然后,我们可以得到三条垂直于X轴的线段。从这些线段中找出一对组合,使得,这对组合的 横坐标之差 乘以 两条线段中较短者的长度 的乘积最大。
解题思路:
最大盛水量取决于两边中较短的那条边,而且如果将较短的边换为更短边的话,盛水量只会变少。所以我们可以用两个头尾指针,计算出当前最大的盛水量后,将较短的边向中间移,因为我们想看看能不能把较短的边换长一点。这样一直计算到左边大于右边为止就行了
先拿最左边的线段和最右边的线段作为组合,计算出乘积,然后,找两者中较为短的一方,慢慢向中间靠拢。举个例子,{4,3,7,2,9,7},先计算4和7的组合的乘积,然后找两者中比较小的一方,这里是4,让它向中间靠拢,向前走一步是3,但3比4小,所以计算3和7的组合是没有意义的,所以,继续向中间靠拢,发现了7,7比4大,所以有可能会得到比原来更大的面积,因此计算7和7的组合的乘积。
重复这个过程,直至左边的工作指针大于等于右边的工作指针
public class Solution { public int maxArea(int[] height) { int lpoint = 0, rpoint = height.length - 1; int area = 0; while (lpoint < rpoint) { area = Math.max(area, Math.min(height[lpoint], height[rpoint]) * (rpoint - lpoint)); if (height[lpoint] > height[rpoint]) rpoint--; else lpoint++; } return area; } }
class Solution(object): def maxArea(self, height): """ :type height: List[int] :rtype: int """ size = len(height) # the size of height maxm = 0 # record the most water j = 0 k = size - 1 while j < k: if height[j] <= height[k]: maxm = max(maxm,height[j] * (k - j)) j += 1 else: maxm = max(maxm,height[k] * (k - j)) k -= 1 return maxm