• 在程序中访问骨架图---35


    原创博客:转载请标明出处:http://www.cnblogs.com/zxouxuewei/

    1.首先确保你的kinect驱动或者uvc相机驱动能正常启动:(如果你使用的是kinect,请运行openni驱动)

    roslaunch openni_launch openni.launch

      如果你没有安装kinect深度相机驱动,请看我前面的博文。

    2.确保安装深度相机NITE。

    首先下载NITE-Bin-Dev-Linux-x64-v1.5.2.23,链接如下:

    a. 32-bit: http://www.openni.ru/wp-content/uploads/2013/10/NITE-Bin-Linux-x86-v1.5.2.23.tar.zip
    b. 64-bit: http://www.openni. ru /wp-content/uploads/2013/10/NITE-Bin-Linux-x64-v1.5.2.23.tar.zip

    2.然后安装,

    root@zxwubuntu-Aspire-V3-572G:cd /root/kinect-install-driver-ubuntu/NITE-Bin-Dev-Linux-x64-v1.5.2.23/
    root@zxwubuntu-Aspire-V3-572G:sudo ./uninstall.sh
    root@zxwubuntu-Aspire-V3-572G:sudo ./install.sh

    3.安装skeleton_markers功能包。

    root@zxwubuntu-Aspire-V3-572G:cd ~/catkin_ws/src
    root@zxwubuntu-Aspire-V3-572G:git clone -b https://github.com/pirobot/skeleton_markers.git
    root@zxwubuntu-Aspire-V3-572G:cd skeleton_markers
    root@zxwubuntu-Aspire-V3-572G:git checkout indigo-devel
    root@zxwubuntu-Aspire-V3-572G:cd ~/catkin_ws
    root@zxwubuntu-Aspire-V3-572G:catkin_make
    root@zxwubuntu-Aspire-V3-572G:rospack profile

    4.运行启动文件

    roslaunch skeleton_markers markers_from_tf.launch

    5,运行rviz 查看骨架图。

    rosrun rviz rviz -d `rospack find skeleton_markers`/markers_from_tf.rviz

    6,运行结果如下:

    7.markers_from_tf.launch文件内容如下:

    <launch>
      <node pkg="openni_tracker" name="openni_tracker" type="openni_tracker"output="screen">
      <param name="fixed_frame" value="openni_depth_frame" />
      </node>
      <node pkg="skeleton_markers" name="markers_from_tf" type="markers_from_tf.py"output="screen">
      <rosparam file="$(find skeleton_markers)/params/marker_params.yaml"command="load" />
      </node>
    </launch>

    8.skeleton_markers/nodes/markers_from_tf.py节点代码如下

    #!/usr/bin/env python
    
    """
        Convert a skeleton transform tree to a list of visualization markers for RViz.
            
        Created for the Pi Robot Project: http://www.pirobot.org
        Copyright (c) 2011 Patrick Goebel.  All rights reserved.
        This program is free software; you can redistribute it and/or modify
        it under the terms of the GNU General Public License as published by
        the Free Software Foundation; either version 2 of the License, or
        (at your option) any later version.
        
        This program is distributed in the hope that it will be useful,
        but WITHOUT ANY WARRANTY; without even the implied warranty of
        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        GNU General Public License for more details at:
        
        http://www.gnu.org/licenses/gpl.html
    """
    
    import rospy
    from visualization_msgs.msg import Marker
    from geometry_msgs.msg import Point
    import tf
    
    class SkeletonMarkers():
        def __init__(self):
            rospy.init_node('markers_from_tf')
                    
            rospy.loginfo("Initializing Skeleton Markers Node...")
            
            rate = rospy.get_param('~rate', 20)
            r = rospy.Rate(rate)
            
            # There is usually no need to change the fixed frame from the default
            self.fixed_frame = rospy.get_param('~fixed_frame', 'openni_depth_frame')
            
            # Get the list of skeleton frames we want to track
            self.skeleton_frames = rospy.get_param('~skeleton_frames', '')
    
            # Initialize the tf listener
            tf_listener = tf.TransformListener()
            
            # Define a marker publisher
            marker_pub = rospy.Publisher('skeleton_markers', Marker, queue_size=5)
            
            # Intialize the markers
            self.initialize_markers()
            
            # Make sure we see the openni_depth_frame
            tf_listener.waitForTransform(self.fixed_frame, self.fixed_frame, rospy.Time(), rospy.Duration(60.0))
            
            # A flag to track when we have detected a skeleton
            skeleton_detected = False
            
            # Begin the main loop
            while not rospy.is_shutdown():
                # Set the markers header
                self.markers.header.stamp = rospy.Time.now()
                            
                # Clear the markers point list
                self.markers.points = list()
                
                # Check to see if a skeleton is detected
                while not skeleton_detected: 
                    # Assume we can at least see the head frame               
                    frames = [f for f in tf_listener.getFrameStrings() if f.startswith('head_')]
                    
                    try:
                        # If the head frame is visible, pluck off the
                        # user index from the name
                        head_frame = frames[0]
                        user_index = head_frame.replace('head_', '')
                        
                        # Make sure we have a transform between the head
                        # and the fixed frame
                        try:
                            (trans, rot)  = tf_listener.lookupTransform(self.fixed_frame, head_frame, rospy.Time(0))
                            skeleton_detected = True
    
                        except (tf.Exception, tf.ConnectivityException, tf.LookupException):
                            skeleton_detected = False
                            rospy.loginfo("User index: " + str(user_index))
                            r.sleep()
                    except:
                        skeleton_detected = False
                
                # Loop through the skeleton frames
                for frame in self.skeleton_frames:
                    # Append the user_index to the frame name
                    skel_frame = frame + "_" + str(user_index)
    
                    # We only need the origin of each skeleton frame
                    # relative to the fixed frame
                    position = Point()
                                            
                    # Get the transformation from the fixed frame
                    # to the skeleton frame
                    try:
                        (trans, rot)  = tf_listener.lookupTransform(self.fixed_frame, skel_frame, rospy.Time(0))
                        position.x = trans[0]
                        position.y = trans[1]
                        position.z = trans[2]
                                                                
                        # Set a marker at the origin of this frame
                        self.markers.points.append(position)
                    except:
                        pass
                    
                # Publish the set of markers
                marker_pub.publish(self.markers)
                                  
                r.sleep()
                
        def initialize_markers(self):
            # Set various parameters
            scale = rospy.get_param('~scale', 0.07)
            lifetime = rospy.get_param('~lifetime', 0) # 0 is forever
            ns = rospy.get_param('~ns', 'skeleton_markers')
            id = rospy.get_param('~id', 0)
            color = rospy.get_param('~color', {'r': 0.0, 'g': 1.0, 'b': 0.0, 'a': 1.0})
            
            # Initialize the marker points list
            self.markers = Marker()
            self.markers.header.frame_id = self.fixed_frame
            self.markers.ns = ns
            self.markers.id = id
            self.markers.type = Marker.POINTS
            self.markers.action = Marker.ADD
            self.markers.lifetime = rospy.Duration(lifetime)
            self.markers.scale.x = scale
            self.markers.scale.y = scale
            self.markers.color.r = color['r']
            self.markers.color.g = color['g']
            self.markers.color.b = color['b']
            self.markers.color.a = color['a']
            
    if __name__ == '__main__':
        try:
            SkeletonMarkers()
        except rospy.ROSInterruptException:
            pass
  • 相关阅读:
    在R语言中轻松创建关联网络
    在R语言中显示美丽的数据摘要summary统计信息
    R语言中不同类型的聚类方法比较
    R语言中的划分聚类模型
    R语言解释生存分析中危险率和风险率的变化
    Stata估算观测数据的风险比
    Stata 中Mata的st_view函数
    R语言多臂试验
    R语言使用倾向评分提高RCT(随机对照试验)的效率
    R语言在RCT中调整基线时对错误指定的稳健性
  • 原文地址:https://www.cnblogs.com/zxouxuewei/p/5410281.html
Copyright © 2020-2023  润新知