• Redis—数据结构之list


    Redis的列表对象底层所使用的数据结构其中之一就是list。

    list

    Redis的list是一个双端链表,其由3部分构成:链表节点、链表迭代器、链表。这一设计思想和STL的list是一样的,STL的list也是由这三部分组成。需要特别说明的是Redis用C语言实现了list的迭代器,比较巧妙,下面就来分析list源码。

    list节点

    节点的值为void*类型,从而可以保存不同类型的值,甚至是另一种类型的对象

    // 双端链表的节点
    typedef struct listNode {
        struct listNode *prev; // 指向上一个节点
        struct listNode *next; // 指向下一个节点
        void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值
    } listNode;

    list迭代器

    c语言实现c++中的迭代器;双端链表的迭代器,方便了遍历链表的操作;根据direction,可设置为前向/反向迭代器

    typedef struct listIter {
        listNode *next;    // 指向迭代器方向上下一个链表结点
        int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动
    } listIter;

    其中direction的取值有:

    /* Directions for iterators */
    // 迭代器方向的宏定义
    #define AL_START_HEAD 0
    #define AL_START_TAIL 1

    list

    与一般设计类似,list中有指向头尾节点的指针,以及链表节点数量的计数。不同的是,由于链表节点为void*类型,被设计为可以存储不同类型的数据,甚至是另一种类型的对象,所以添加了与节点相关的3个函数,作用分别是复制、释放、比较节点的值。

    // 双端链表
    typedef struct list {
        listNode *head; // 指向链表头节点
        listNode *tail; // 指向链表尾节点
        void *(*dup)(void *ptr); // 复制链表节点所保存的值
        void (*free)(void *ptr); // 释放链表节点所保存的值
        int (*match)(void *ptr, void *key); // 节点值比较函数
        unsigned long len; // 链表的节点数目
    } list;

    list的操作函数

    Redis用宏定义实现了一些复杂度为O(1)的链表操作,以提高list操作的效率。

    /* Functions implemented as macros */
    // 通过宏来实现一些O(1)时间复杂度的函数
    #define listLength(l) ((l)->len)
    #define listFirst(l) ((l)->head)
    #define listLast(l) ((l)->tail)
    #define listPrevNode(n) ((n)->prev)
    #define listNextNode(n) ((n)->next)
    #define listNodeValue(n) ((n)->value)
    
    #define listSetDupMethod(l,m) ((l)->dup = (m))
    #define listSetFreeMethod(l,m) ((l)->free = (m))
    #define listSetMatchMethod(l,m) ((l)->match = (m))
    
    #define listGetDupMethod(l) ((l)->dup)
    #define listGetFree(l) ((l)->free)
    #define listGetMatchMethod(l) ((l)->match)

    list的源码比较好理解,本人对其已经做了详细的注释,就不仔细介绍了,下面附上源码及注释。list相关的文件有两个:adlist.h, adlist.c

    adlist.h

    #ifndef __ADLIST_H__
    #define __ADLIST_H__
    
    /* Node, List, and Iterator are the only data structures used currently. */
    
    // redis的链表为双端链表
    // 节点的值为void*类型,从而可以保存不同类型的值
    // 结合dup,free,match函数实现链表的多态
    
    // 双端链表的节点
    typedef struct listNode {
        struct listNode *prev; // 指向上一个节点
        struct listNode *next; // 指向下一个节点
        void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值
    } listNode;
    
    // c语言实现c++中的迭代器!!!
    // 双端链表的迭代器,方便了遍历链表的操作
    // 根据direction,可设置为前向/反向迭代器
    typedef struct listIter {
        listNode *next;    // 指向迭代器方向上下一个链表结点
        int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动
    } listIter;
    
    // 双端链表
    typedef struct list {
        listNode *head; // 指向链表头节点
        listNode *tail; // 指向链表尾节点
        void *(*dup)(void *ptr); // 复制链表节点所保存的值
        void (*free)(void *ptr); // 释放链表节点所保存的值
        int (*match)(void *ptr, void *key); // 节点值比较函数
        unsigned long len; // 链表的节点数目
    } list;
    
    
    
    /* Functions implemented as macros */
    // 通过宏来实现一些O(1)时间复杂度的函数
    #define listLength(l) ((l)->len)
    #define listFirst(l) ((l)->head)
    #define listLast(l) ((l)->tail)
    #define listPrevNode(n) ((n)->prev)
    #define listNextNode(n) ((n)->next)
    #define listNodeValue(n) ((n)->value)
    
    #define listSetDupMethod(l,m) ((l)->dup = (m))
    #define listSetFreeMethod(l,m) ((l)->free = (m))
    #define listSetMatchMethod(l,m) ((l)->match = (m))
    
    #define listGetDupMethod(l) ((l)->dup)
    #define listGetFree(l) ((l)->free)
    #define listGetMatchMethod(l) ((l)->match)
    
    /* Prototypes */
    // list数据结构相关的函数
    // 具体含义见adlist.c
    list *listCreate(void);
    void listRelease(list *list);
    list *listAddNodeHead(list *list, void *value);
    list *listAddNodeTail(list *list, void *value);
    list *listInsertNode(list *list, listNode *old_node, void *value, int after);
    void listDelNode(list *list, listNode *node);
    listIter *listGetIterator(list *list, int direction);
    listNode *listNext(listIter *iter);
    void listReleaseIterator(listIter *iter);
    list *listDup(list *orig);
    listNode *listSearchKey(list *list, void *key);
    listNode *listIndex(list *list, long index);
    void listRewind(list *list, listIter *li);
    void listRewindTail(list *list, listIter *li);
    void listRotate(list *list);
    
    /* Directions for iterators */
    // 迭代器方向的宏定义
    #define AL_START_HEAD 0
    #define AL_START_TAIL 1
    
    #endif /* __ADLIST_H__ */
    View Code

    adlist.c

    /* adlist.c - A generic doubly linked list implementation
     */
    
    
    #include <stdlib.h>
    #include "adlist.h"
    #include "zmalloc.h"
    
    /* Create a new list. The created list can be freed with
     * AlFreeList(), but private value of every node need to be freed
     * by the user before to call AlFreeList().
     *
     * On error, NULL is returned. Otherwise the pointer to the new list. */
     
    // 创建一个链表
    // 返回值:list/NULL
    list *listCreate(void)
    {
        struct list *list;
    
        if ((list = zmalloc(sizeof(*list))) == NULL) // 为链表分配内存
            return NULL;
        // 初始化链表结构体的成员
        list->head = list->tail = NULL;
        list->len = 0;
        list->dup = NULL;
        list->free = NULL;
        list->match = NULL;
        return list; // 返回为新链表分配的内存的起始地址
    }
    
    /* Free the whole list.
     *
     * This function can't fail. */
     
    // 释放链表及链表节点
    void listRelease(list *list)
    {
        unsigned long len;
        listNode *current, *next;
    
        current = list->head;
        len = list->len;
        while(len--) {
            next = current->next;
            if (list->free) list->free(current->value); // 释放链表节点的值
            zfree(current); // 释放链表节点
            current = next;
        }
        zfree(list); // 释放链表
    }
    
    /* Add a new node to the list, to head, containing the specified 'value'
     * pointer as value.
     *
     * On error, NULL is returned and no operation is performed (i.e. the
     * list remains unaltered).
     * On success the 'list' pointer you pass to the function is returned. */
     
    // 从双端链表的头部插入新节点
    // 返回值:list/NULL
    list *listAddNodeHead(list *list, void *value)
    {
        listNode *node;
    
        if ((node = zmalloc(sizeof(*node))) == NULL)
            return NULL;
        node->value = value;
        if (list->len == 0) { // 原链表为一空链表
            list->head = list->tail = node;
            node->prev = node->next = NULL;
        } else {
            // 插入到双端链表的头结点之前
            node->prev = NULL;
            node->next = list->head;
            list->head->prev = node;
            list->head = node;
        }
        list->len++;
        return list;
    }
    
    /* Add a new node to the list, to tail, containing the specified 'value'
     * pointer as value.
     *
     * On error, NULL is returned and no operation is performed (i.e. the
     * list remains unaltered).
     * On success the 'list' pointer you pass to the function is returned. */
    
    // 从双端链表的尾部插入新节点
    // 返回值:list/NULL 
    list *listAddNodeTail(list *list, void *value)
    {
        listNode *node;
    
        if ((node = zmalloc(sizeof(*node))) == NULL)
            return NULL;
        node->value = value;
        if (list->len == 0) {
            list->head = list->tail = node;
            node->prev = node->next = NULL;
        } else {
            node->prev = list->tail;
            node->next = NULL;
            list->tail->next = node;
            list->tail = node;
        }
        list->len++;
        return list;
    }
    
    // 在链表list的节点old_node的前或后插入新节点
    // after为0,则在old_node之前插入;否则,在old_node之后插入
    // 返回值:list/NULL
    list *listInsertNode(list *list, listNode *old_node, void *value, int after) {
        listNode *node;
    
        if ((node = zmalloc(sizeof(*node))) == NULL)
            return NULL;
        node->value = value;
        if (after) { // old_node之后插入
            node->prev = old_node;
            node->next = old_node->next;
            if (list->tail == old_node) {
                list->tail = node;
            }
        } else { // old_node之前插入
            node->next = old_node;
            node->prev = old_node->prev;
            if (list->head == old_node) {
                list->head = node;
            }
        }
        if (node->prev != NULL) {
            node->prev->next = node;
        }
        if (node->next != NULL) {
            node->next->prev = node;
        }
        list->len++;
        return list;
    }
    
    /* Remove the specified node from the specified list.
     * It's up to the caller to free the private value of the node.
     *
     * This function can't fail. */
    
    // 删除链表list中节点node
    void listDelNode(list *list, listNode *node)
    {
        if (node->prev)
            node->prev->next = node->next;
        else
            list->head = node->next;
        if (node->next)
            node->next->prev = node->prev;
        else
            list->tail = node->prev;
        if (list->free) list->free(node->value);
        zfree(node);
        list->len--;
    }
    
    /* Returns a list iterator 'iter'. After the initialization every
     * call to listNext() will return the next element of the list.
     *
     * This function can't fail. */
     
     // 返回链表的迭代器
     // 返回值:list/NULL
    listIter *listGetIterator(list *list, int direction)
    {
        listIter *iter;
    
        if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;
        if (direction == AL_START_HEAD)
            iter->next = list->head; // 设置为前向迭代器
        else
            iter->next = list->tail; // 设置为反向迭代器
        iter->direction = direction;
        return iter;
    }
    
    /* Release the iterator memory */
    
    // 释放迭代器的内存
    void listReleaseIterator(listIter *iter) {
        zfree(iter);
    }
    
    /* Create an iterator in the list private iterator structure */
    
    // 回绕迭代器到链表头部
    void listRewind(list *list, listIter *li) {
        li->next = list->head;
        li->direction = AL_START_HEAD;
    }
    
    // 回绕迭代器到链表尾部
    void listRewindTail(list *list, listIter *li) {
        li->next = list->tail;
        li->direction = AL_START_TAIL;
    }
    
    /* Return the next element of an iterator.
     * It's valid to remove the currently returned element using
     * listDelNode(), but not to remove other elements.
     *
     * The function returns a pointer to the next element of the list,
     * or NULL if there are no more elements, so the classical usage patter
     * is:
     *
     * iter = listGetIterator(list,<direction>);
     * while ((node = listNext(iter)) != NULL) {
     *     doSomethingWith(listNodeValue(node));
     * }
     *
     * */
     
     // 返回迭代器所指向的元素,并将迭代器往其方向上移动一步
     // 返回值:指向当前节点的指针/NULL
    listNode *listNext(listIter *iter)
    {
        listNode *current = iter->next;
    
        if (current != NULL) {
            if (iter->direction == AL_START_HEAD)
                iter->next = current->next;
            else
                iter->next = current->prev;
        }
        return current;
    }
    
    /* Duplicate the whole list. On out of memory NULL is returned.
     * On success a copy of the original list is returned.
     *
     * The 'Dup' method set with listSetDupMethod() function is used
     * to copy the node value. Otherwise the same pointer value of
     * the original node is used as value of the copied node.
     *
     * The original list both on success or error is never modified. */
     
     // 复制输入链表
     // list*/NULL
    list *listDup(list *orig)
    {
        list *copy;
        listIter iter;
        listNode *node;
    
        if ((copy = listCreate()) == NULL) // 创建新链表
            return NULL;
        copy->dup = orig->dup;
        copy->free = orig->free;
        copy->match = orig->match;
        listRewind(orig, &iter); // 回绕迭代器到链表头部
        while((node = listNext(&iter)) != NULL) { // 遍历原链表,顺序取出节点
            void *value;
    
            if (copy->dup) {
                value = copy->dup(node->value); // 通过list.dup函数复制节点值
                if (value == NULL) {
                    listRelease(copy); // 出错释放链表
                    return NULL;
                }
            } else
                value = node->value;
            if (listAddNodeTail(copy, value) == NULL) { // 从新链表尾部插入值
                listRelease(copy); // 出错释放链表
                return NULL;
            }
        }
        return copy;
    }
    
    /* Search the list for a node matching a given key.
     * The match is performed using the 'match' method
     * set with listSetMatchMethod(). If no 'match' method
     * is set, the 'value' pointer of every node is directly
     * compared with the 'key' pointer.
     *
     * On success the first matching node pointer is returned
     * (search starts from head). If no matching node exists
     * NULL is returned. */
     
     // 返回链表中节点值与key相匹配的节点
     // listNode*/NULL
    listNode *listSearchKey(list *list, void *key)
    {
        listIter iter;
        listNode *node;
    
        listRewind(list, &iter);
        while((node = listNext(&iter)) != NULL) {
            if (list->match) {
                if (list->match(node->value, key)) { // 调用list.match函数对节点值进行比较
                    return node;
                }
            } else {
                if (key == node->value) {
                    return node;
                }
            }
        }
        return NULL;
    }
    
    /* Return the element at the specified zero-based index
     * where 0 is the head, 1 is the element next to head
     * and so on. Negative integers are used in order to count
     * from the tail, -1 is the last element, -2 the penultimate
     * and so on. If the index is out of range NULL is returned. */
     
     // 返回给定索引位置的节点
     // index=0,返回头结点
     // index < 0,则从尾部开始返回,index = -1,返回尾部节点
    listNode *listIndex(list *list, long index) {
        listNode *n;
    
        if (index < 0) {
            index = (-index)-1;
            n = list->tail;
            while(index-- && n) n = n->prev;
        } else {
            n = list->head;
            while(index-- && n) n = n->next;
        }
        return n;
    }
    
    /* Rotate the list removing the tail node and inserting it to the head. */
    
    // 将尾部节点弹出,插入到链表头节点之前,成为新的表头节点
    void listRotate(list *list) {
        listNode *tail = list->tail;
    
        if (listLength(list) <= 1) return;
    
        /* Detach current tail */
        list->tail = tail->prev;
        list->tail->next = NULL;
        /* Move it as head */
        list->head->prev = tail;
        tail->prev = NULL;
        tail->next = list->head;
        list->head = tail;
    }
    View Code

    (全文完)

    附:Redis系列:http://www.cnblogs.com/zxiner/p/7197415.html

  • 相关阅读:
    PyQt(Python+Qt)学习随笔:QDial刻度盘部件功能简介
    PyQt(Python+Qt)学习随笔:QSlider滑动条部件功能简介
    PyQt(Python+Qt)学习随笔:QScrollBar以及QAbstractSlider滚动条部件功能详解
    第15.43节、PyQt输入部件:QAbstractSpinBox派生类QSpinBox、 QDoubleSpinBox、QDateTimeEdit、QDateEdit和QTimeEdit功能简介
    第三十六章、PyQt输入部件:QAbstractSpinBox派生类QSpinBox、 QDoubleSpinBox、QDateTimeEdit、QDateEdit和QTimeEdit
    PyQt(Python+Qt)学习随笔:QDateEdit日期编辑部件和QTimeEdit时间编辑部件
    程序员求职之道(《程序员面试笔试宝典》)之面试官箴言?
    程序员求职之道(《程序员面试笔试宝典》)之面试心得交流?
    程序员求职之道(《程序员面试笔试宝典》)之企业面试笔试攻略(互联网)?
    程序员求职之道(《程序员面试笔试宝典》)之面试笔试技巧?
  • 原文地址:https://www.cnblogs.com/zxiner/p/7203094.html
Copyright © 2020-2023  润新知