• Educational Codeforces Round 9 E. Thief in a Shop NTT


    E. Thief in a Shop
     

    A thief made his way to a shop.

    As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.

    The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).

    Find all the possible total costs of products the thief can nick into his knapsack.

    Input

    The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.

    The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.

    Output

    Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.

    Examples
    input
    3 2
    1 2 3
    output
    2 3 4 5 6
     
     
    题意:
      给你n个数,你可以选数选k次,每次可以选相同的数,问你有多少种和
    题解:
      将k分解
      进行log(k)次FFT
      FFT精度可能不够,bool好像能过
      NTT,换一个合适 的 费马素数和原格就能过
       复杂度:O(n*log(n)*log(k))
    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    typedef long long LL;
    const long long INF = 1e18+1LL;
    const double pi = acos(-1.0);
    const int N = 5e5+10, M = 1e3+20,inf = 2e9,mod = 1e9+7;
    const long long P=23068673LL;
    const int G=3;
    
    LL mul(LL x,LL y){
        return (x*y-(LL)(x/(long double)P*y+1e-3)*P+P)%P;
    }
    LL qpow(LL x,LL k,LL p){
        LL ret=1;
        while(k){
            if(k&1) ret=mul(ret,x);
            k>>=1;
            x=mul(x,x);
        }
        return ret;
    }
    
    LL wn[50];
    void getwn(){
        for(int i=1; i<=22; ++i){
            int t=1<<i;
            wn[i]=qpow(G,(P-1)/t,P);
        }
    }
    
    int len;
    void NTT(LL y[],int op){
        for(int i=1,j=len>>1,k; i<len-1; ++i){
            if(i<j) swap(y[i],y[j]);
            k=len>>1;
            while(j>=k){
                j-=k;
                k>>=1;
            }
            if(j<k) j+=k;
        }
        int id=0;
        for(int h=2; h<=len; h<<=1) {
            ++id;
            for(int i=0; i<len; i+=h){
                LL w=1;
                for(int j=i; j<i+(h>>1); ++j){
                    LL u=y[j],t=mul(y[j+h/2],w);
                    y[j]=u+t;
                    if(y[j]>=P) y[j]-=P;
                    y[j+h/2]=u-t+P;
                    if(y[j+h/2]>=P) y[j+h/2]-=P;
                    w=mul(w,wn[id]);
                }
            }
        }
        if(op==-1){
            for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
            LL inv=qpow(len,P-2,P);
            for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
        }
    }
    void Convolution(LL A[],LL B[]){
        for (int i=0;i<len;i++) A[i]=mul(A[i],B[i]);
    }
    int x,n,m;
    LL num[1<<22],now[1<<22];
    int main() {
        scanf("%d%d",&n,&m);
        int mx = 0;
        for(int i = 1; i <= n; ++i) scanf("%d",&x),num[x]=1,mx = max(x,mx);
        mx*=m;
        for(len=1; len<=mx; len<<=1);
        now[0] = 1;getwn();
        NTT(now,1); NTT(num,1);
        while(m > 0) {
            if(m%2) {
                Convolution(now,num);
            }
            Convolution(num,num);
            m/=2;
        }
        NTT(now,-1);
        for(int i = 1; i <= mx; ++i) {
            if(now[i]) printf("%d ",i);
        }
        return 0;
    }
    
    /*
    3 3
    3 5 11
    */
  • 相关阅读:
    临时表的问题
    List集合和Set集合互转
    mysql数据库事件
    mysql存储过程事务
    N皇后问题
    递归实现字符数组的全排列及组合
    判断一个序列是否为某二叉搜索树的后续遍历结果
    递归实现两个有序链表的合并
    递归实现字符串反转
    根据字节数截取字符串
  • 原文地址:https://www.cnblogs.com/zxhl/p/7106132.html
Copyright © 2020-2023  润新知