• POJ 3185 The Water Bowls 高斯消元


    The Water Bowls
     

    Description

    The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls. 

    Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls). 

    Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

    Input

    Line 1: A single line with 20 space-separated integers

    Output

    Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

    Sample Input

    0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

    Sample Output

    3

    Hint

    Explanation of the sample: 

    Flip bowls 4, 9, and 11 to make them all drinkable: 
    0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
    0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
    0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]
    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<vector>
    using namespace std;
    
    //#pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    
    typedef long long LL;
    const long long INF = 1e18;
    const double Pi = acos(-1.0);
    const int N = 1e2+10, M = 1e2+11, mod = 1e9+7, inf = 0x3fffffff;
    
    int a[N][N],x[N],free_x[N];
    int Gauss(int equ,int var)
    {
        int i,j,k;
        int max_r;
        int col;
        int ta,tb;
        int LCM;
        int temp;
        int free_index;
        int num=0;
        for(int i=0;i<=var;i++)
        {
            x[i]=0;
            free_x[i]=0;
        }
        col=0;
        for(k = 0;k < equ && col < var;k++,col++)
        {
            max_r=k;
            for(i=k+1;i<equ;i++)
            {
                if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
            }
            if(max_r!=k)
            {
                for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
            }
            if(a[k][col]==0)
            {
                k--;
                free_x[num++]=col;
                continue;
            }
            for(i=k+1;i<equ;i++)
            {
                if(a[i][col]!=0)
                {
                    for(j=col;j<var+1;j++)
                    {
                        a[i][j] ^= a[k][j];
                    }
                }
            }
        }
        for (i = k; i < equ; i++)
        {
            if (a[i][col] != 0) return -1;
        }
        int stat=1<<(var-k);
        int res=inf;
        for(i=0;i<stat;i++)
        {
            int cnt=0;
            int index=i;
            for(j=0;j<var-k;j++)
            {
                x[free_x[j]]=(index&1);
                if(x[free_x[j]]) cnt++;
                index>>=1;
            }
            for(j=k-1;j>=0;j--)
            {
                int tmp=a[j][var];
                for(int l=j+1;l<var;l++)
                  if(a[j][l]) tmp^=x[l];
                x[j]=tmp;
                if(x[j])cnt++;
            }
            if(cnt<res)res=cnt;
        }
        return res;
    }
    void init() {
            memset(a,0,sizeof(a));
            for(int i = 0; i < 20; ++i) a[i][i] = 1;
            for(int i = 0; i < 20; ++i) {if(i >= 1)a[i][i-1] = 1; if(i < 19) a[i][i+1] = 1;}
    }
    int main() {
            init();
            for(int i = 0; i < 20; ++i) scanf("%d",&a[i][20]);
            printf("%d
    ",Gauss(20,20));
            return 0;
    }
  • 相关阅读:
    No.1
    JS二叉树的操作
    JS实现快排
    BOM中的各种height
    innerHTML outerHTML innerText value 区别
    【转载】JS中DOM操作汇总
    【转载】轻松理解JS闭包
    【转载】JavaScript模块入门
    【转载】JavaScript模块简介
    【转载】浏览器缓存详解:expires cache-control last-modified
  • 原文地址:https://www.cnblogs.com/zxhl/p/5876459.html
Copyright © 2020-2023  润新知