Memory and his friend Lexa are competing to get higher score in one popular computer game. Memory starts with score a and Lexa starts with score b. In a single turn, both Memory and Lexa get some integer in the range [ - k;k] (i.e. one integer among - k, - k + 1, - k + 2, ..., - 2, - 1, 0, 1, 2, ..., k - 1, k) and add them to their current scores. The game has exactly t turns. Memory and Lexa, however, are not good at this game, so they both always get a random integer at their turn.
Memory wonders how many possible games exist such that he ends with a strictly higher score than Lexa. Two games are considered to be different if in at least one turn at least one player gets different score. There are (2k + 1)2t games in total. Since the answer can be very large, you should print it modulo 109 + 7. Please solve this problem for Memory.
The first and only line of input contains the four integers a, b, k, and t (1 ≤ a, b ≤ 100, 1 ≤ k ≤ 1000, 1 ≤ t ≤ 100) — the amount Memory and Lexa start with, the number k, and the number of turns respectively.
Print the number of possible games satisfying the conditions modulo 1 000 000 007 (109 + 7) in one line.
1 2 2 1
6
In the first sample test, Memory starts with 1 and Lexa starts with 2. If Lexa picks - 2, Memory can pick 0, 1, or 2 to win. If Lexa picks - 1, Memory can pick 1 or 2 to win. If Lexa picks 0, Memory can pick 2 to win. If Lexa picks 1 or 2, Memory cannot win. Thus, there are3 + 2 + 1 = 6 possible games in which Memory wins.
题意:
A,B两人玩t轮游戏
每轮游戏没人可以从[-k,k]中获取任意的一个分数
AB起始分数分别为a,b
问你最终A分数严格比B多的方案数
题解:
设定dp[i][j]为第i轮 获得分数j的方案数
这个可以进行滚动数组和前缀和优化
最后枚举一个人的 分数 得到答案
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<queue> #include<set> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1 #define rs ls | 1 #define mid ((ll+rr)>>1) #define pii pair<int,int> #define MP make_pair typedef long long LL; const long long INF = 1e18; const double Pi = acos(-1.0); const int N = 5e5+10, M = 1e2+11, mod = 1e9+7, inf = 2e9; int a,b,k,t; LL sum[N], dp[2][N]; int main() { scanf("%d%d%d%d",&a,&b,&k,&t); int now = 1; int last = now ^ 1; dp[last][0] = 1; for(int i = 0; i <= 2 * k * t; ++i) sum[i] = 1; for(int i = 1; i <= t; ++i) { for(int j = 0; j <= 2*k*t; ++j) { if(j <= 2 * k) dp[now][j] = sum[j]; else { dp[now][j] = (( sum[j] - sum[j - 2*k - 1] ) % mod + mod ) % mod; } } sum[0] = dp[now][0]; for(int j = 1; j <= 4 * k * t; ++j) sum[j] = ((sum[j-1] + dp[now][j]) % mod + mod) % mod; now^=1; } LL ans = 0; for(int i = 0; i <= 2 * k * t; ++i) { if(a + i - 1 - b >= 0)ans = (ans + dp[now^1][i] * sum[a + i - 1 - b]%mod) % mod; } cout<<(ans+mod) % mod<<endl; return 0; }