Weak Pair
Problem Description
You are given a rooted tree of N nodes, labeled from 1 to N. To the ith node a non-negative value ai is assigned.An ordered pair of nodes (u,v) is said to be weak if
(1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
(2) au×av≤k.
Can you find the number of weak pairs in the tree?
(1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
(2) au×av≤k.
Can you find the number of weak pairs in the tree?
Input
There are multiple cases in the data set.
The first line of input contains an integer T denoting number of test cases.
For each case, the first line contains two space-separated integers, N and k, respectively.
The second line contains N space-separated integers, denoting a1 to aN.
Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v.
Constrains:
1≤N≤105
0≤ai≤109
0≤k≤1018
The first line of input contains an integer T denoting number of test cases.
For each case, the first line contains two space-separated integers, N and k, respectively.
The second line contains N space-separated integers, denoting a1 to aN.
Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v.
Constrains:
1≤N≤105
0≤ai≤109
0≤k≤1018
Output
For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.
Sample Input
1
2 3
1 2
1 2
Sample Output
1
题意:
给出一棵n
个结点的树和一个数k
, 每个节点上有权值
, 问有多少个有序对(u,v) (u,v)
满足u
是v
的祖先, a[u] * a[v] <=K;
题解:
最近学treap,发个题解
从根开始dfs,
用treap维护当前节点uu
到根的节点权值序列,
然后就在treap上查询小于等于K/a[v]
的数的个数.
之后把a[u]加到treap中, 退栈的时候把a[u]从treap中删除. 复杂度是nlogn的.
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1 #define rs ls | 1 #define mid ((ll+rr)>>1) #define pii pair<int,int> #define MP make_pair typedef long long LL; const long long INF = 1e18+10; const double Pi = acos(-1.0); const int N = 1e5+10, M = 1e6+11, mod = 1e9+7, inf = 2e9; LL K,ans,a[N]; int n,size,root,head[N],t; struct data{ int l,r,size,rnd,w; LL v; }tr[N]; void update(int k)//更新结点信息 { tr[k].size=tr[tr[k].l].size+tr[tr[k].r].size+tr[k].w; } void rturn(int &k) { int t=tr[k].l;tr[k].l=tr[t].r;tr[t].r=k; tr[t].size=tr[k].size;update(k);k=t; } void lturn(int &k) { int t=tr[k].r;tr[k].r=tr[t].l;tr[t].l=k; tr[t].size=tr[k].size;update(k);k=t; } void insert(int &k,LL x) { if(k==0) { size++;k=size; tr[k].size=tr[k].w=1;tr[k].v=x;tr[k].rnd=rand(); return; } tr[k].size++; if(tr[k].v==x)tr[k].w++; else if(x>tr[k].v) { insert(tr[k].r,x); if(tr[tr[k].r].rnd<tr[k].rnd)lturn(k); } else { insert(tr[k].l,x); if(tr[tr[k].l].rnd<tr[k].rnd)rturn(k); } } void del(int &k,LL x) { if(k==0)return; if(tr[k].v==x) { if(tr[k].w>1) { tr[k].w--;tr[k].size--;return; } if(tr[k].l*tr[k].r==0)k=tr[k].l+tr[k].r; else if(tr[tr[k].l].rnd<tr[tr[k].r].rnd) rturn(k),del(k,x); else lturn(k),del(k,x); } else if(x>tr[k].v) tr[k].size--,del(tr[k].r,x); else tr[k].size--,del(tr[k].l,x); } int query_rank(int k,LL x) { if(k==0)return 0; if(tr[k].v==x)return tr[tr[k].l].size+tr[k].w; else if(x>tr[k].v) return tr[tr[k].l].size+tr[k].w+query_rank(tr[k].r,x); else return query_rank(tr[k].l,x); } struct ss{int to,next;}e[N * 2]; void add(int u,int v) {e[t].next=head[u];e[t].to=v;head[u]=t++;} void dfs(int u,int fa) { LL limit = INF; if(a[u] != 0) limit = K/(a[u]); ans += (query_rank(root,limit)); insert(root,a[u]); for(int i = head[u]; i; i = e[i].next) { int to = e[i].to; if(to == fa) continue; dfs(to,u); } del(root,a[u]); } int d[N]; int main() { int T; scanf("%d",&T); while(T--) { size = 0; root = 0; memset(head,0,sizeof(head));t = 1; for(int i = 1; i < N; ++i) { tr[i].l = 0; tr[i].r = 0; d[i] = 0; } scanf("%d%lld",&n,&K); for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]); for(int i = 1; i < n; ++i) { int u,v; scanf("%d%d",&u,&v); add(u,v);add(v,u); d[v]++; } int rt; for(int i = 1; i <= n; ++i) if(!d[i]) rt = i; ans = 0; dfs(rt,0); printf("%lld ",ans); } return 0; }