• 2016 ACM/ICPC Asia Regional Dalian Online HDU 5877 Weak Pair treap + dfs序


    Weak Pair



    Problem Description
     
    You are given a rooted tree of N nodes, labeled from 1 to N. To the ith node a non-negative value ai is assigned.An ordered pair of nodes (u,v) is said to be weak if
      (1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
      (2) au×avk.

    Can you find the number of weak pairs in the tree?
     

    Input

    There are multiple cases in the data set.
      The first line of input contains an integer T denoting number of test cases.
      For each case, the first line contains two space-separated integers, N and k, respectively.
      The second line contains N space-separated integers, denoting a1 to aN.
      Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v.

      Constrains: 
      
      1N105 
      
      0ai109 
      
      0k1018
     
    Output
     
    For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.
     
    Sample Input
     
    1 2 3 1 2 1 2
     

    Sample Output

    1
     

    题意:

      给出一棵n个结点的树和一个数k, 每个节点上有权值​​, 问有多少个有序对(u,v)  (u,v)满足uv的祖先, a[u] * a[v] <=K;

    题解:

      最近学treap,发个题解

      从根开始dfs,

       用treap维护当前节点uu到根的节点权值序列,

       然后就在treap上查询小于等于K/a[v]​​的数的个数.

      之后把a[u]加到treap中, 退栈的时候把a[u]从treap中删除. 复杂度是nlogn的.

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    
    typedef long long LL;
    const long long INF = 1e18+10;
    const double Pi = acos(-1.0);
    const int N = 1e5+10, M = 1e6+11, mod = 1e9+7, inf = 2e9;
    
    LL K,ans,a[N];
    int n,size,root,head[N],t;
    
    struct data{
        int l,r,size,rnd,w;
        LL v;
    }tr[N];
    void update(int k)//更新结点信息
    {
        tr[k].size=tr[tr[k].l].size+tr[tr[k].r].size+tr[k].w;
    }
    void rturn(int &k)
    {
        int t=tr[k].l;tr[k].l=tr[t].r;tr[t].r=k;
        tr[t].size=tr[k].size;update(k);k=t;
    }
    void lturn(int &k)
    {
        int t=tr[k].r;tr[k].r=tr[t].l;tr[t].l=k;
        tr[t].size=tr[k].size;update(k);k=t;
    }
    void insert(int &k,LL x)
    {
        if(k==0)
        {
            size++;k=size;
            tr[k].size=tr[k].w=1;tr[k].v=x;tr[k].rnd=rand();
            return;
        }
        tr[k].size++;
        if(tr[k].v==x)tr[k].w++;
        else if(x>tr[k].v)
        {
            insert(tr[k].r,x);
            if(tr[tr[k].r].rnd<tr[k].rnd)lturn(k);
        }
        else
        {
            insert(tr[k].l,x);
            if(tr[tr[k].l].rnd<tr[k].rnd)rturn(k);
        }
    }
    void del(int &k,LL x)
    {
        if(k==0)return;
        if(tr[k].v==x)
        {
            if(tr[k].w>1)
            {
                tr[k].w--;tr[k].size--;return;
            }
            if(tr[k].l*tr[k].r==0)k=tr[k].l+tr[k].r;
            else if(tr[tr[k].l].rnd<tr[tr[k].r].rnd)
                rturn(k),del(k,x);
            else lturn(k),del(k,x);
        }
        else if(x>tr[k].v)
            tr[k].size--,del(tr[k].r,x);
        else tr[k].size--,del(tr[k].l,x);
    }
    int query_rank(int k,LL x)
    {
        if(k==0)return 0;
        if(tr[k].v==x)return tr[tr[k].l].size+tr[k].w;
        else if(x>tr[k].v)
            return tr[tr[k].l].size+tr[k].w+query_rank(tr[k].r,x);
        else return query_rank(tr[k].l,x);
    }
    
    
    
    struct ss{int to,next;}e[N * 2];
    void add(int u,int v) {e[t].next=head[u];e[t].to=v;head[u]=t++;}
    
    void dfs(int u,int fa) {
            LL limit = INF;
            if(a[u] != 0) limit = K/(a[u]);
            ans += (query_rank(root,limit));
            insert(root,a[u]);
            for(int i = head[u]; i; i = e[i].next) {
                int to = e[i].to;
                if(to == fa) continue;
                dfs(to,u);
            }
            del(root,a[u]);
    }
    int d[N];
    int main() {
            int T;
            scanf("%d",&T);
            while(T--) {
                size = 0;
                root = 0;
                memset(head,0,sizeof(head));t = 1;
                for(int i = 1; i < N; ++i) {
                    tr[i].l = 0;
                    tr[i].r = 0;
                    d[i]  = 0;
                }
                scanf("%d%lld",&n,&K);
                for(int i = 1; i <= n; ++i) scanf("%lld",&a[i]);
                for(int i = 1; i < n; ++i) {
                    int u,v;
                    scanf("%d%d",&u,&v);
                    add(u,v);add(v,u);
                    d[v]++;
                }
                int rt;
                for(int i = 1; i <= n; ++i) if(!d[i]) rt = i;
                ans = 0;
                dfs(rt,0);
                printf("%lld
    ",ans);
    
            }
            return 0;
    }
  • 相关阅读:
    字典dict
    数组处理
    switch语句
    java基础复习2
    位运算
    内存中占用的字节
    java基础复习
    常用快捷键
    利用Typora设计博客的方式
    java数据结构-排序算法-堆算法
  • 原文地址:https://www.cnblogs.com/zxhl/p/5860163.html
Copyright © 2020-2023  润新知