题目链接:
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51253
题意:
给出一个v个点e条边的有向加权图,求1~v的两条不相交的路径使得权值和最小
题解:
最小费用最大流
吧2到v-1的每隔结点拆点x和x',中间连一条容量为1费用为0的边,然后求得是1到v流量为2的最小费用流
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using namespace std; const int maxn = 1e6+20, M = 30005, mod = 1e9+7, inf = 0x3f3f3f3f; typedef long long ll; //不同为1,相同为0 const int MAXN = 100000; const int MAXM = 1000000; const int INF = 0x3f3f3f3f; struct Edge { int to,next,cap,flow,cost; }edge[MAXM]; int head[MAXN],tol; int pre[MAXN],dis[MAXN]; bool vis[MAXN]; int N;//节点总个数,节点编号从0~N-1 void init(int n) { N = n; tol = 0; memset(head,-1,sizeof(head)); } void add(int u,int v,int cap,int cost) //点u至点v,容量,花费 { edge[tol].to = v; edge[tol].cap = cap; edge[tol].cost = cost; edge[tol].flow = 0; edge[tol].next = head[u]; head[u] = tol++; edge[tol].to = u; edge[tol].cap = 0; edge[tol].cost = -cost; edge[tol].flow = 0; edge[tol].next = head[v]; head[v] = tol++; } bool spfa(int s,int t) { queue<int>q; for(int i = 0;i < N;i++) { dis[i] = INF; vis[i] = false; pre[i] = -1; } dis[s] = 0; vis[s] = true; q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); vis[u] = false; for(int i = head[u]; i != -1;i = edge[i].next) { int v = edge[i].to; if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost ) { dis[v] = dis[u] + edge[i].cost; pre[v] = i; if(!vis[v]) { vis[v] = true; q.push(v); } } } } if(pre[t] == -1)return false; else return true; } //返回的是最大流,cost存的是最小费用 int minCostMaxflow(int s,int t,int &cost) { int flow = 0; cost = 0; while(flow<2&&spfa(s,t)) { int Min = INF; for(int i = pre[t];i != -1;i = pre[edge[i^1].to]) { if(Min > edge[i].cap - edge[i].flow) Min = edge[i].cap - edge[i].flow; } for(int i = pre[t];i != -1;i = pre[edge[i^1].to]) { edge[i].flow += Min; edge[i^1].flow -= Min; cost += edge[i].cost * Min; } flow += Min; } return flow; } int main() { int n,m; while(scanf("%d%d",&n,&m)!=EOF) { int S = 0, T = n*2; init (5000); for(int i=1;i<=m;i++) { int a,b,c; scanf("%d%d%d",&a,&b,&c); if(a!=1&&a!=n) add(a+n,b,1,c); else add(a,b,1,c); } add(S,1,2,0);add(n,T,2,0); for(int i=2;i<n;i++) add(i,i+n,1,0); int ans = 0; minCostMaxflow(S,T,ans); printf("%d ",ans); } return 0; }