• UVA 10090


    I have some (say, n) marbles (small glass balls) and I am going to buy some boxes to store them. The
    boxes are of two types:
    T ype 1: each box costs c1 Taka and can hold exactly n1 marbles
    T ype 2: each box costs c2 Taka and can hold exactly n2 marbles
    I want each of the used boxes to be filled to its capacity and also to minimize the total cost of
    buying them. Since I find it difficult for me to figure out how to distribute my marbles among the
    boxes, I seek your help. I want your program to be efficient also.
    Input
    The input file may contain multiple test cases. Each test case begins with a line containing the integer
    n (1 ≤ n ≤ 2,000,000,000). The second line contains c1 and n1, and the third line contains c2 and n2.
    Here, c1, c2, n1 and n2 are all positive integers having values smaller than 2,000,000,000.
    A test case containing a zero for n in the first line terminates the input.
    Output
    For each test case in the input print a line containing the minimum cost solution (two nonnegative
    integers m1 and m2, where mi = number of T ypei boxes required) if one exists, print ‘failed’ otherwise.
    If a solution exists, you may assume that it is unique.
    Sample Input
    43
    1 3
    2 4
    40
    5 9
    5 12
    0
    Sample Output
    13 1
    failed

    题意:给你n个球,给你两种盒子第一种盒子每个盒子c1美元,可以恰好装n1个球;第二种盒子每个盒子c2元,可以恰好装n2个球。找出一种方法把这n个球装进盒子,每个盒子都装满,并且花费最少的钱。

    题解:http://blog.csdn.net/lyhvoyage/article/details/37932481

    假设第一种盒子买m1个,第二种盒子买m2个,则n1*m1 + n2*m2 = n。由扩展欧几里得 ax+by=gcd(a,b)= g,如果n%g!=0,则方程无解。

    联立两个方程,可以解出m1=nx/g, m2=ny/g,所以通解为m1=nx/g + bk/g, m2=ny/g - ak/g,

    又因为m1和m2不能是负数,所以m1>=0, m2>=0,所以k的范围是 -nx/b <= k <= ny/a,且k必须是整数。

    假设

    k1=ceil(-nx/b)

    k2=floor(ny/b)

    如果k1>k2的话则k就没有一个可行的解,于是也是无解的情况。

    设花费为cost,则cost = c1*m1 + c2*m2,

    把m1和m2的表达式代入得

    cost=c1*(-xn/g+bk/g)+c2*(yn/g-ak/g) = ((b*c1-a*c2)/g)*k+(c1*x*n+c2*y*n)/g

    这是关于k的一次函数,单调性由b*c1-a*c2决定。

    若b*c1-a*c2 >= 0,k取最小值(k1)时花费最少;否则,k取最大值(k2)时花费最少。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    using namespace std ;
    typedef long long ll;
    const int N=550;
    
    /*m1*n1 + m2*n2 = n;
    
    a = n1;
    b = n2;
    
    a*x + b*y = g
    
    m1 =  x*n/g + k*b/g;
    m2 =  y*n/g - k*a/g;
    
    cost = m1*c1 + m2*c2;
    
    cost = x*n*c1/g + k*b*c1/g  + y*n*c2/g - k*a*c2/g ;
    
    cost = k*(b*c1 - a*c2)/g + (y*n*c2+x*n*c1)/g;
    */
    ll ExpGcd(ll a,ll b,ll &x,ll &y)
    {
        ll temp,p;
        if(b==0)
        {
            x=1; y=0;
            return a;
        }
        p=ExpGcd(b,a%b,x,y);
        temp=x; x=y; y=temp-(a/b)*y;
        return p;
    }
    ll n,x,y,c1,c2,n1,n2,l,r;
    int main() {
        while(scanf("%lld",&n)!=EOF) {
            if(n == 0) break;
            scanf("%lld%lld",&c1,&n1);
            scanf("%lld%lld",&c2,&n2);
            ll g = ExpGcd(n1,n2,x,y);
            if(n % g != 0) {
                printf("failed
    ");
                continue;
            }
            ll k1 = ceil(-n * x * 1.0/ n2);
            ll k2 = floor(n * y * 1.0/ n1);
            if(k1>k2) {
                printf("failed
    ");
                continue;
            }
            if((c2*n1 - c1*n2)>0) {
                l = n2 / g * k2 + n/g * x;
                r = n / g * y - n1 / g * k2;
            }
            else {
                l = n2 / g * k1 + n / g * x;
                r = n / g * y - n1 / g * k1;
            }
            printf("%lld %lld
    ", l , r);
        }
        return 0;
    }
    代码
  • 相关阅读:
    实现三栏布局
    Element对象
    React中组件间通信的方式
    CSS实现展开动画
    Vue中组件间通信的方式
    java面试一日一题:mysql执行delete数据真的被删除了吗
    java面试一日一题:讲对mysql的MVCC的理解
    java面试一日一题:讲下mysql中的锁
    java面试一日一题:如何优化sql
    java面试一日一题:在创建微服务时,是用RPC还是http
  • 原文地址:https://www.cnblogs.com/zxhl/p/5106678.html
Copyright © 2020-2023  润新知