• ZOJ 3872 计算对答案的贡献


                                                   D - Beauty of Array

    Description

    Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.

    Output

    For each case, print the answer in one line.

    Sample Input

    3
    5
    1 2 3 4 5
    3
    2 3 3
    4
    2 3 3 2
    

    Sample Output

    105
    21
    38

    题意:给你一个数组,找出所有任意连续子序列中美数和,一段子序列美数和定义为:互异数的和
    题解:计算对答案的贡献
    #include<map>
    #include<set>
    #include<cmath>
    #include<queue>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #pragma comment(linker, "/STACK:102400000,102400000")
    using namespace std;
    const int N=1010;
    const int MAX=151;
    const int MOD=1000000007;
    const int INF=1000000000;
    const double EPS=0.00000001;
    typedef long long ll;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int num[1000100];
    int main()
    {
        int a,i,n,T;
        ll ans;
        scanf("%d", &T);
        while (T--) {
            scanf("%d", &n);
            ans=0;
            memset(num,0,sizeof(num));
            for (i=1;i<=n;i++) {
                scanf("%d", &a);
                ans+=(ll)(i-num[a])*(n-i+1)*a;
                num[a]=i;
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    代码
  • 相关阅读:
    之前的博客
    用struts2 s2-045漏洞拿站记录
    修改BlackLowKey皮肤样式,增加占屏比
    SpringBoot自动配置原理
    CAS无锁技术
    CAS单点登录原理解析
    死锁与活锁的区别,死锁与饥饿的区别
    jvm问题
    jdk动态代理的实现原理
    抽象工厂
  • 原文地址:https://www.cnblogs.com/zxhl/p/4865476.html
Copyright © 2020-2023  润新知