• 安装kafka集群


    1解压tar包

    tar -zxvf kafka_2.12-1.1.0.tgz

    2.进入config目录

    3.配置server.properties文件

    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    # see kafka.server.KafkaConfig for additional details and defaults
    
    ############################# Server Basics #############################
    
    # The id of the broker. This must be set to a unique integer for 
    #注意在集群中brokerid是独一无二的 
    each broker.
    broker.id=2
    
    ############################# Socket Server Settings #############################
    
    # The address the socket server listens on. It will get the value returned from
    # java.net.InetAddress.getCanonicalHostName() if not configured.
    #   FORMAT:
    #     listeners = listener_name://host_name:port
    #   EXAMPLE:
    #     listeners = PLAINTEXT://your.host.name:9092
    #打开#
    listeners=PLAINTEXT://:9092
    
    # Hostname and port the broker will advertise to producers and consumers. If not set,
    # it uses the value for "listeners" if configured.  Otherwise, it will use the value
    # returned from java.net.InetAddress.getCanonicalHostName()
    #配置自己的ip
    advertised.listeners=PLAINTEXT://192.168.5.102:9092
    
    # Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
    #listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
    
    # The number of threads that the server uses for receiving requests from the network and sending responses to the network
    num.network.threads=3
    
    # The number of threads that the server uses for processing requests, which may include disk I/O
    num.io.threads=8
    
    # The send buffer (SO_SNDBUF) used by the socket server
    socket.send.buffer.bytes=102400
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    socket.receive.buffer.bytes=102400
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    socket.request.max.bytes=104857600
    
    
    ############################# Log Basics #############################
    
    # A comma separated list of directories under which to store log
    #配置数据文件地址
     files
    log.dirs=/app/kafka/log
    
    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    num.partitions=1
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    num.recovery.threads.per.data.dir=1
    
    ############################# Internal Topic Settings  #############################
    # The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
    # For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
    offsets.topic.replication.factor=1
    transaction.state.log.replication.factor=1
    transaction.state.log.min.isr=1
    
    ############################# Log Flush Policy #############################
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk.
    # There are a few important trade-offs here:
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000
    
    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000
    
    ############################# Log Retention Policy #############################
    
    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.
    
    
    # A size-based retention policy for logs. Segments are pruned from the log unless the remaining
    # segments drop below log.retention.bytes. Functions independently of log.retention.hours.
    #log.retention.bytes=1073741824
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    log.segment.bytes=1073741824
    
    # The interval at which log segments are checked to see if they can be deleted according
    # to the retention policies
    log.retention.check.interval.ms=300000
    
    ############################# Zookeeper #############################
    
    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    #配置zookeeper集群地址
    zookeeper.connect=192.168.5.101:2181,192.168.5.102:2181,192.168.5.103:2181
    
    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=6000
    
    
    ############################# Group Coordinator Settings #############################
    
    # The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
    # The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
    # The default value for this is 3 seconds.
    # We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
    # However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
    group.initial.rebalance.delay.ms=0

    进入bin目录

    后台启动kafka:

     ./kafka-server-start.sh ../config/server.properties 1>/dev/null 2>&1 &

    指定监听端口启动:

    JMX_PORT=2898 ./
    kafka-server-start.sh ../config/server.properties 1>/dev/null 2>&1 &
  • 相关阅读:
    VS2010 添加项目依赖
    人工鱼群算法 AFSA
    粒子群算法 PSO
    CUDA速度测试
    AGSO 萤火虫算法
    用于WTL工具栏的辅助类CToolBarHelper
    关于结构体内存对齐
    遗传算法 GA
    A*算法
    人工蜂群算法 ABC
  • 原文地址:https://www.cnblogs.com/zxf330301/p/9219279.html
Copyright © 2020-2023  润新知