1.理解分类与监督学习、聚类与无监督学习。
简述分类与聚类的联系与区别。
分类:找出描述并区分数据类或概念的模型,以便能够使用模型预测类标记未知的对象类。分类的目的是把数据项映射到给定的类别的某一个类中。
聚类:将本身没有类别的样本聚集成不同的组,把这组数据对象的集合叫簇。目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。
简述什么是监督学习与无监督学习。
监督学习:针对的是有标签的数据集,对具有概念标记的训练样本进行学习,以尽可能对训练样本集外的数据进行标记预测。
无监督学习:针对的是没有标签的数据集,对没有概念标记的训练样本进行学习,以发现训练样本集中的结构性知识。
2.朴素贝叶斯分类算法 实例
利用关于心脏情患者的临床数据集,建立朴素贝叶斯分类模型。
有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数
目标分类变量疾病:–心梗–不稳定性心绞痛
新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)
最可能是哪个疾病?
上传演算过程。
假设患有心梗为事件A,患有心绞痛为事件B。性别为男为x1,年龄<70为x2,KILLP=1为x3,饮酒为x4,吸烟为x5,住院<7为x6.
p(x1|A)=7/16 P(X2|A)=4/16 P(X3|A)=9/16
P(X4|A)=3/16 P(X5|A)=7/16 P(X6|A)=4/16
P(X1,X2,X3,X4,X5,X6|A)=7/16*4/16*9/16*3/16*7/16*4/16=0.001262
p(X1|B)=1/4 P(X2|B)=1/4 P(X3|B)=1/4
P(X4|B)=1/4 P(X5|B)=2/4 P(X6|B)=2/4
P(X1,X2,X3,X4,X5,X6|B)=1/4*1/4*1/4*1/4*2/4*2/4=0.000977
p(A|x)=p(x|A)*P(A)/P(X)=0.001009/P(X)
P(B|X)=P(x|B)*p(B)/P(X)=0.000195/P(X)
因为分母是相同的,只要比较分子的数就行。
所以该患者的症状是患心梗的可能更大
3.编程实现朴素贝叶斯分类算法
利用训练数据集,建立分类模型。
输入待分类项,输出分类结果。
可以心脏情患者的临床数据为例,但要对数据预处理。
import numpy as np import pandas data=pandas.read_excel('心脏病患者临床数据.xlsx') data #对性别进行处理(男为0,女为1) xingbie=[] for i in data['性别']: if i =='男': xingbie.append(0) else: xingbie.append(1) #对年龄段进行预处理(<70为1,70-80为2,>80为3) ages=[] for j in data['年龄']: if j =='<70': ages.append(1) elif j =='70-80': ages.append(2) else: ages.append(3) #对住院天数进行处理(<70为1,7-14为2,>14为3) days=[] for k in data['住院天数']: if k=='<7': days.append(1) elif k=='7-14': days.append(2) else: days.append(3) #处理后的数据 data1=data data1['性别']=xingbie data1['年龄']=ages data1['住院天数']=days #将数据转成数组 data_arr=np.array(data1) data_arr #利用贝叶斯算法对给定的组别进行分类 def NB(xingbie, ages, KILLP, drink, smoke, days): #初始化值 x1_y1,x2_y1,x3_y1,x4_y1,x5_y1,x6_y1 = 0,0,0,0,0,0 x1_y2,x2_y2,x3_y2,x4_y2,x5_y2,x6_y2 = 0,0,0,0,0,0 y1 = 0 y2 = 0 #计算为心梗的概率 for a in data_arr: if a[6]=='心梗': y1+=1 if a[0]==xingbie: x1_y1+=1 if a[1]==ages: x2_y1+=1 if a[2]==KILLP: x3_y1+=1 if a[3]==drink: x4_y1+=1 if a[4]==smoke: x5_y1+=1 if a[5]==days: x6_y1+=1 else:#计算患有不稳定性心绞痛的概率 y2+=1 if a[0]==xingbie: x1_y2+=1 if a[1]==ages: x2_y2+=1 if a[2]==KILLP: x3_y2+=1 if a[3]==drink: x4_y2+=1 if a[4]==smoke: x5_y2+=1 if a[5]==days: x6_y2+=1 #计算每种症状在心梗下的概率 x1_y1, x2_y1, x3_y1, x4_y1, x5_y1, x6_y1 = x1_y1/y1, x2_y1/y1, x3_y1/y1, x4_y1/y1, x5_y1/y1, x6_y1/y1 #计算每种症状在不稳定性心绞痛的概率 x1_y2, x2_y2, x3_y2, x4_y2, x5_y2, x6_y2 = x1_y2/y2, x2_y2/y2, x3_y2/y2, x4_y2/y2, x5_y2/y2, x6_y2/y2 #多个症状在心梗下的概率 x_y1 = x1_y1 * x2_y1 * x3_y1 * x4_y1 * x5_y1 * x6_y1 #多个症状在不稳定性心绞痛下的概率 x_y2 = x1_y2 * x2_y2 * x3_y2 * x4_y2 * x5_y2 * x6_y2 ##初始化各个特征x的值 x1,x2,x3,x4,x5,x6=0,0,0,0,0,0 for a in data_arr: if a[0]==xingbie: x1+=1 if a[1]==ages: x2+=1 if a[2]==KILLP: x3+=1 if a[3]==drink: x4+=1 if a[4]==smoke: x5+=1 if a[5]==days: x6+=1 lens = len(data_arr) #所有x的可能性 x = x1/lens * x2/lens * x3/lens * x4/lens * x5/lens* x6/lens # 分别计算心梗和不稳定性心绞痛的概率 y1_x = (x_y1)*(y1/lens)/x print(y1_x) y2_x = (x_y2)*(y2/lens)/x print(y2_x) # 判断是哪中疾病的可能更大 if y1_x > y2_x: print('病人患心梗的可能更大,可能性为:',y1_x) else: print('病人患不稳定性心绞痛的可能更大,可能性为:',y2_x) # 判断:性别=‘男’,年龄<70, KILLP=1,饮酒=‘是’,吸烟=‘是”,住院天数<7 NB(0,1,1,'是','是',1)