• poj 1269


    相交求交点:

     第二个公式容易记忆:(以第二个公式为模板)

    Point res=b.s;
    t=((e-s)^(s-b.s))/((e-s)^(b.e-b.s));
    res.x+=(e.x-s.x)*t;
    res.y+=(e.y-s.y)*t;
    return res;

    例题:

    poj 1269

     intersecting lines

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    int cmp(double x)
    {
        if(fabs(x)<=1e-8)return 0;
        if(x<0)return -1;
        return 1;
    }
    struct Point
    {
        double x,y;
        Point (){};
        Point (double _x,double _y)
        {
            x=_x,y=_y;
        }
        Point operator -(const Point &b)const{
        return Point (x-b.x,y-b.y);
        }
        double operator *(const Point &b)const {
        return (x*b.x+y*b.y);
        }
        double operator ^(const Point &b)const {
        return (x*b.y-b.x*y);
        }
    };
    
    struct Line
    {
        Point s,e;
        Line(){};
        Line(Point _s,Point _e)
        {
            s=_s,e=_e;
        }
        Point operator &(const Line &b)const{
        Point res=b.s;
        if(cmp((e-s)^(b.e-b.s))==0)
        {
            if(cmp((e-s)^(e-b.e))==0)
            {
                cout<<"LINE"<<endl;
                return Point(0,0);
            }
            else
                {
                    cout<<"NONE"<<endl;
                    return Point(0,0);
                }
        }
        double t=((e-s)^(s-b.s))/((e-s)^(b.e-b.s));
        res.x+=(b.e.x-b.s.x)*t;
        res.y+=(b.e.y-b.s.y)*t;
        return res;
        }
    };
    
    
    int main ()
    {
        int n;
        cin>>n;
        Line line1,line2;
        Point point ;
        double x1,x2,x3,x4,y1,y2,y3,y4;
         cout<<"INTERSECTING LINES OUTPUT"<<endl;
        while(n--)
        {
            cin>>x1>>y1>>x2>>y2;
            line1=Line(Point(x1,y1),Point(x2,y2));
            cin>>x3>>y3>>x4>>y4;
            line2=Line(Point(x3,y3),Point(x4,y4));
            point=line1&line2;
            if(point.x!=0||point.y!=0)
              printf("POINT %.2f %.2f
    ",point.x,point.y);
        }
        cout<<"END OF OUTPUT"<<endl;
        return 0;
    }
    

      

  • 相关阅读:
    自动控制中的泛函分析(一)
    自动控制中的泛函分析(一)
    Andrew Ng机器学习课程15
    Andrew Ng机器学习课程14(补)
    Andrew Ng机器学习课程14(补)
    关于PADS的一些概念和实用技巧(一)
    关于PADS的一些概念和实用技巧(一)
    Andrew Ng机器学习课程14
    Andrew Ng机器学习课程14
    《数学之美》之计算复杂度
  • 原文地址:https://www.cnblogs.com/zwx7616/p/11189746.html
Copyright © 2020-2023  润新知